December 16, 1986
I am trying to explain Leibniz to you. I am exactly in the situation of a blind person trying to tap into the clear area of each of you. But the clear area of everyone is very different, according to what? This explains everything: according to your own background. … Why would progress be possible through Leibniz? Why is he one of the first philosophers who advance the notion of progress? It’s because each individual substance has a power, alas, rather restrained, of enlarging its clear area. That’s what it means to learn; it’s to increase step by step along the scale of degrees of consciousness.
Seminar Introduction
In his introductory remarks to this annual seminar (on 28 October 1986), Deleuze stated that he would have liked to devote this seminar to the theme “What is philosophy?”, but that he “[didn’t] dare take it on” since “it’s such a sacred subject”. However, the seminar that he was undertaking on Leibniz and the Baroque instead “is nearly an introduction to ‘What is philosophy?’” Thus, the 1986-87 seminar has this dual reading, all the more significant in that, unknown to those listening to Deleuze (and perhaps to Deleuze himself), this would be the final seminar of his teaching career.
Deleuze planned the seminar in two segments: under the title “Leibniz as Baroque Philosopher,” he presented the initial operating concepts on Leibniz, notably on the fold. Circumstances during fall 1986 limited this segment to four sessions with an unexpected final session in the first meeting of 1987 (6 January). For the second segment, Deleuze chose the global title “Principles and Freedom”, a segment consisting of fifteen sessions lasting to the final one on 2 June.
English Translation

The unusual four-week gap (due to student strikes across France) dictates Deleuze’s point-by-point recapitulation of previous material (corresponding roughly to chapters 1 through 3 of The Fold) and from the “Ninth Remark” onward, Deleuze continues his development, attempting to wrap up the first part of the course, with his first real consideration of Leibniz’s concept of the monad and its importance for the Baroque architecture of the two floors. The recapitulation proceeds by numbered points: first, Leibniz’s Baroque philosophy unfolds on two floors, one with the pleats of matter (lower, the infinitely composed), the other with the folds in the soul (upper, of the Simples). Second: given that matter’s (with its pleats) constant refolding, the variable curve or inflection constitutes its ideal genetic element, engendering an infinite series. Third: given that variable curvature’s center is the vertex or point of view. Fourth: the list of characteristics for the point of view. Fifth: the passage from point of view to inclusion or inherence implies that what is folded necessarily is enveloped or implicated within something that occupies the point of view. Sixth: whereas the subject (or superject, possessing point of view) envelops, it envelops what is folded, i.e., the objectile, and the states of the world are attributes of the subject (or soul), with a shift from the domain of visibility to the domain of legibility such that we shift from the domain of the percept (on the level of envelopment) to the domain of the concept (on the level of subject-predicate envelopment). Seventh: each subject is the mirror of the world, but only from its point of view, such that the world exists only as enveloped in each subject. Eighth: given the plurality of points of view, one envelops the infinite series of the world, but only from the tiny, clearly and distinctly grasped region, necessarily distinguished from another’s legible portion.
Ninth: Deleuze develops the question of Leibniz’s term “monad”, i.e., the individual in its notion, that envelops infinity, grasped through the notion of the concept, i.e., through understanding and extension. What constitutes individuation can be explained variously, e.g., as contingencies or accidents, or as the ultimate act of final form (Duns Scotus), and for Leibniz, there is no indefinite but rather an actual infinite, with the individual as the concept insofar as its comprehension is an actual infinite and its extension unity, i.e., the monad as the huge individual unity of an infinite multiplicity, or mathematically, 1 over infinite (1/infinite). Deleuze situates the interest of this topic in Christianity’s philosophical engagement with proofs of God’s existence and concludes that the formation of the upper floor of the Baroque house, with individual substances that envelop the world, i.e., subjects as individual notions, while matter and its thousand pleats occupy the lower floor, with inflexion between the two as ideal genetic element of the upper floor but also reaching the genetic elements of pleats of matter. Having hoped for time to develop the floors in terms of painting, arguing that between the floors, their relations will be named “harmony”, one of Leibniz’s great concepts, Deleuze closes rather allusively by suggesting that a topic for reflection on this concept is the harmonic mean of numbers, in contrast to the arithmetic mean, dealing with the number and its inverse.
Gilles Deleuze
Seminar on Leibniz and the Baroque — Leibniz as Baroque Philosopher
Lecture 04, 16 December 1986: Review: Inherence to Inflection, and the Monad and the Individual
Initial Transcription, Web Deleuze; Augmented Transcription and Translated by Charles J. Stivale (duration, 2:27:05)[1]
So much has happened that we hardly recognize each other. I don’t know really what you remember in what we are doing. Once I’ve said that the student movement must not lose its strength, among the secondary activities, it’s suggested that you should create a petition addressed to the University president to propose the hypothesis: are the bars that have been installed compatible with security? In the event that a fire should break out here, how would we get out? Moreover there is the matter of keys, of locked doors, open not closed, then not open, all this detracts greatly from your intellectual efforts. So a petition is needed, a very polite one. But the security bars, think about this! [Pause] Ok.
In the preceding meetings which were very poorly attended,[2] we talked about what happened, so I don’t think we have to return to this, unless someone here has a declaration to make? Let me restate, but it’s obvious for everyone, what really matters is that this student movement should continue, that it not give up. That’s why I think all the students’ efforts are very important, at the level of each university in order even to create the elements of a counter-project for the university organization. [The professors could also get a bit involved.][3] Ok.
So let’s continue, amazed already to be at the fourth meeting. Today I’d like to… Ah, next week vacation begins, from 20 Dec to 6 Jan. And as usual, the sixth is a Tuesday, every time we come back from break it’s Tuesday, so we will meet on Tuesday, 6 Jan. Today I would like to make every effort to finish the first part, with the option of abridging some things, which is not a problem, and I’d like to start with some numbered remarks. And fine, you will see yourselves, I am trying to create short summaries and state some things that I have not yet said in order to bring you back into the focus of our work.
My first remark, you recall, is what this introductory part consists of, and I told you, it’s very simple: Leibniz’s Baroque philosophy unfolds on two floors. What I did not say is that, already in this idea of a world of two floors, there is something that must impress us because that [idea] engages philosophical reflection in general. Specifically, does this two-floored Baroque world, which I will not return to, engage all philosophical reflection? Because, perhaps it is an important moment for a problem that is troubling metaphysics, at that moment, and had been for a long time, notably the famous problem of two worlds, the intelligible world and the sensible world. Doesn’t Baroque philosophy, or more precisely, doesn’t Leibniz, by presenting us with a two-floored world, belong to this tradition all the while revising it quite profoundly? How are these floors distributed? In the history of philosophy, they had already undergone many changes before Leibniz.
So we will be interested in knowing in what way the disjunction, the distinction in Leibniz’s works develops a very profound revision of the distinction of two worlds. All the more so since we saw what these floors consisted of, and I told you that the Baroque world is the world of the fold extending to infinity, and that initially is differentiated and doubled into two kinds of fold. On one floor we have the pleats (replis) of matter, and on the other floor the folds (plis) in the soul; pleats of matter and folds in the soul. And the floor with pleats of matter is like the world of the composed, of the infinitely composed, matter never ceasing to be refolded and unfolded, and on the other floor, it’s the floor of the Simples [les Simples]. The souls are simple, hence the expression: the folds in the soul, in the soul. Thus we saw a vague program of study of the pleats of matter, and then we started into an analysis of what the folds in the soul mean.
Second remark. To answer this question of what the folds in the soul are, we set off in search – the two floors have to communicate – in search of an ideal genetic element, an ideal genetic element of the pleats of matter. In an earlier meeting, we studied the pleats of matter, why matter is a power (puissance) that never ceases refolding, and then we passed on to the hypothesis of an ideal genetic element of the pleats of matter. And no doubt, if there is such an element of the pleats of matter, what is it? It is the variable curve or the inflection. (Figure 1)[4] For Leibniz, the world is fundamentally affected by a curve. We have seen the importance of this, from the viewpoint of the physics of matter, but beyond the physics of matter, in mathematic and in mathematical idealities (idéalités). The mathematical ideality is a curve, the curve of the universe. This is a very profound Leibnizian theme. You recall that this did not surprise us, to notice that inflection, or the variable curve, goes to infinity. [Pause] I’ll remind you briefly that we saw this through the very properties of the irrational number, or the “deaf” number as they said in the seventeenth century; the irrational or deaf number is, at once, inseparable from the curve on the straight line, and also engenders – still a genetic element — an infinite series. So the variable curvature, or the inflection, goes to infinity. The idea of an infinite series would define one the most important chapters of Leibniz’s mathematics.
Third remark: from the inflection, that is, the variable curvature, from the inflection to the point of view. No doubt, the concept of inflection already had a very great characteristic originality in Leibniz’s philosophy, so grant him as well that the introduction of point of view as a philosophical concept must have had an extreme importance for philosophy. From inflection to point of view: why? Because the variable curvature refers to centers. Centers of curvature, on the side of the concavity of the curve. (Figure 2)[5] So the variable curve is inseparable from vectors of concavity. And the center, understood as center of the variable curvature, what is it? It is the vertex, it is the point of view. What does ‘vertex’ mean? It means that it is the locus of points where the tangents meet at each point of the variable curve. You remember? [Deleuze writes on the board] I would say that such a center of the curvature is a point of view on the portion of the curve defined by a vector of concavity. And that is what was essential. I want you to understand how really… independently of anything very scientific or philosophical, how one passes precisely, how naturally — it’s a kind of deduction that I want to propose to you — how one passes from the idea of inflection or variable curvature to that of point of view.
I tried to show you in what sense this was very important — and in his book on Leibniz [Le système de Leibniz], Michel Serres showed it perfectly — in what sense it was very, very important that, ultimately, for Leibniz, the substitution occurred from the center conceived as center of configuration of a regular figure, for this notion of center was substituted that of point of view. In the center of the circle is substituted the vertex of the cone, the vertex of the cone is the point of view. So as if through a necessary linkage we pass from the idea of variable curvature to the point of view or vertex. For the geometry of the center is substituted a geometry of vertices, a geometry of points of view. Is that ok? Is it clear?
Fourth remark, but once again, this is valid for all of today’s remarks, these are the steps of a deduction. [In fact, Deleuze continues discussing the third remark] Recall well, by virtue of the earlier remark, how we have passed from the idea of inflection to the idea of point of view. That’s what seems fundamental to me. Realize that if we had started by proposing Leibniz’s notion of point of view, one could have said some extremely interesting things, of course, but we would not have understood how we got there. When a philosopher discovers new concepts, it’s not suddenly, all at once, in his head. He got there through all sorts of problems. The universe first had to be affected by a curvature, and more, by a variable curvature. It’s an elastic world; this is Leibniz’s physics of elasticity. The universe had to be affected by a variable curvature so that, afterward, the notion of point of view might really be concretely founded. Consider how we pass from inflection to point of view. The center of the variable curvature is no longer a center, in the sense of center of a circle, that is, the center of a regular configuration; it’s a site, it’s a vertex. It’s a vertex as a function of which I see, that is, it’s something that makes itself visible.
Fourth remark [Deleuze now passes to a new point]: But what is a point of view? First characteristic, it seems to me, a point of view is always in relation with a variation or a series. [Pause] Moreover, it is itself empowered to place into a series, the power of arranging (puissance d’ordonner), the power of arranging cases. We saw it in the simple mathematical examples, the vertex of the cone is a point of view because it has the power of arranging curves to the second degree. Circle, ellipse, parabola, hyperbola. The vertex of Pascal’s arithmetic triangle, you remember that lovely triangle? I hope so, but it doesn’t matter… The vertex of Pascal’s arithmetical triangle is the power of arranging the second degree powers. [Pause] This is the first characteristic of the point of view.
The second characteristic of point of view: above all, it does not mean everything is relative, or at least it means that everything is relative on condition that the relative becomes absolute. What do I mean? I mean that the point of view does not indicate a relativity of what is seen, that follows from the preceding characteristic: if the point of view is really the power of arranging cases, power of placing phenomena into series, point of view is then, suddenly, the condition for emergence or manifestation of a truth in things. You will find no truth if you do not have a determined point of view. It’s the curvature of things that requires the point of view. One can say nothing else; this curved universe of Leibniz, one has to start there. If not, it seems to me everything stays abstract. In other words, there is no truth if you have not found a point of view [where truth] is possible, that is, from which a particular kind of truth is possible.
It’s in this way that the theory of point of view introduces into philosophy what I call a perspectivism. When Nietzsche declared himself close to Leibniz, it’s precisely in the name of such a perspectivism, and in Nietzsche’s as well as Leibniz’s work, perspectivism will not mean to each person a different truth but will mean point of view as condition for the manifestation of the true. But for another great perspectivist, the novelist Henry James, point of view and the technique of points of view never meant that truth is relative to each person, but that there is a point of view starting from which chaos is organized, in which the secret is discovered.
Third characteristic of point of view: henceforth, point of view is not at all a frontal perspective that would allow a form to be seized in its best conditions. Point of view is fundamentally Baroque, but why? This is because point of view is never a means (une instance) through which one can seize a form, but point of view is a means (une instance) through which one seizes a series of forms, in their passage from one form to another, either as a metamorphosis of forms – the passage from one form to another — or as anamorphosis, passage from chaos to form. [Pause] This is the very character of Baroque perspective.
Last characteristic of point of view: point of view is affected by a fundamental pluralism; whoever says point of view says plurality of points of view. Point of view is inseparable from a pluralism, indeed, but in which sense? Notice that in this, we are going to have a little difficulty: the point of view is essentially multiple. That all philosophy of point of view is pluralist, we know in any case that, yet again, this certainly does not mean “to each person a different truth”. That’s not right, that’s not what founds the pluralism of point of view. Once again, on the contrary, we saw that it’s the power of arranging and of creating series, of creating series of a multitude of forms. Point of view opens onto an infinite series.
Well yes, but still… This is a bit disturbing. Why? If the point of view opens onto an infinite series, — that is, let’s say at an extreme, if every point of view is [opened] onto an infinite series, that is if every point of view is [opened] onto the world – this is not surprising since the world is affected by a curvature, so that point of view is then [opened] onto the world; I am trying to speak to you in very ordinary terms about what Leibniz presents in an elaboration of concepts that’s much more… — If any point of view is [opened] onto the world, why are there several points of view? If point of view is an infinite series, why are there several points of view? Perhaps we are going to have difficulties in accounting [for this]. However, we still must move on: there is an essential plurality of points of view. Perhaps my figure 2 indicates this enough: if the world is in inflection, and point of view is defined on the side of concavity, there is evidently a distribution of points of view around the point of inflection. So there are necessarily several points of view. What I don’t know yet… I am sure of two things as a result of this brief remark; I am certain that any point of view opens onto an infinite series, and at an extreme, onto the series of series, that is, onto the world; and I am certain also that there are several points of view. The little difficulty is, yet again, that by virtue of the first characteristic, point of view opens onto the infinite series, that is, onto the world. Why is there not a single point of view that it would simply be necessary to discover and to rise to? Well no, there are necessarily several points of view because of the curvature, the inflection, the variable curvature. We will have to arrange that. One senses that there is something needing to be arranged. Still, though, an essential pluralism remains the final noteworthy characteristic, for the moment, of point of view.
This was my fourth remark. This fourth remark provided elements for defining what one must understand by “Baroque perspective”. [Pause] As a result of these four initial remarks, I can affirm that we have passed from the variable curvature, or from inflection, to point of view.
Fifth remark. We are going to pass from point of view to inclusion or inherence, a constant word for Leibniz, in esse in Latin. What is this in esse? It’s “being in”, being included, being included in, being inherent to. It was not enough to go from the variable curvature or inflection to point of view; we have to go from point of view to inclusion and inherence. This is the object of the fifth remark. [Interruption] — Come in… [Laughter] and please close the door – [Brief recording interruption, change of tape recorder orientation and sound quality]
As a result, our total object is to show how we necessarily pass from the variable curvature or inflection to inclusion or inherence. For the moment, my fifth remark is: how do we pass from point of view to inclusion? I told you that Leibniz often adopts the following theme: you can always construct a right angle in a circle. [Deleuze writes on the board while speaking] This is not the center of the circle, it’s the vertex; in the Leibnizian technique of translation of centers into vertices, it’s the vertex of a right angle. Where does the right angle begin? [Sound of Deleuze marking the drawing] As Leibniz says, [Several unclear words] … the definition. The closer you move the [circle] arc toward the vertex itself, the more you notice that the angle is already a right angle. At most, the fact that this angle is a right angle is included in S, I included in the vertex, is included in the point of view. You will tell me that, still, this is a bit weak, but that’s what I’m looking for, things that really go without saying. In a certain way, the angle is already right in the point S such as it is defined? Good.
Or, I would say: the variable curvature is in the curvature center that corresponds to it (figure 2). Why? Precisely since this center precisely is the locus of points where the tangents meet at each point of the variable curvature This is a strange idea; so now this is what must be said: the visibility, or if you prefer that which is manifest, the phenomenon. Or if you prefer, the curve. The visible curve is located in point of view onto the curve. The visible curve is as if in the center of the curvature, the visible curve is located in the point of view onto the curve. Good.
Reading philosophy means doing two things at once: it means being very attentive to the linkage of concepts, that’s what philosophical reading is; but there is no philosophical reading without there being a non-philosophical reading. And the non-philosophical reading, without which the philosophical reading remains dead, provides all kinds of sensible intuitions that you must emerge within you, but extremely rudimentary sensible intuitions, and because of this, are extremely lively.
The visible is included in point of view. What does that mean? If we try to continue from this, what sensible intuition is located underneath this? Let’s begin again with our variable curvature. Our variable curvature is the fold, or the genetic element of the fold. We saw that matter ceaselessly folds back onto itself, more generally the world is folded. Let me ask why something is folded? Why is it folded? This comes back to Leibniz, he is famous for asking a reason for each thing; it’s a philosophy that he himself presents as a philosophy of sufficient reason. Everything has a reason. What he understands by reason, we will see, but we cannot start from there, it’s too abstract. Not that it’s too difficult, but just that at this point, it would make Leibniz die. We’d have a kind of death of Leibniz. You can only make a philosopher live through the non-philosophical reading that you undertake. Such that the most philosophical of all philosophers, is in some ways the least philosophical of all philosophers, and in the history of philosophy, there was the most philosophical of philosophers who was also the least philosophical of philosophers, that is, accessible to non-philosophers, that’s Spinoza. We’re out of luck, we are talking about Leibniz, and here comes Spinoza: the author that would be susceptible to an extremely complex philosophical reading, and at the same time, the most violent non-philosophical reading. Before it was ever Nietzsche, it was Spinoza. But let’s say it was also Leibniz.
So why would something be folded? At the level of non-philosophical sensible intuition, I am saying something very simple. I was saying in the last class, before we left each other for such a long time (18 November), you have things that get folded. We forget; I don’t know if things are folded. Leibniz says yes, the universe is affected by a curvature, but why? Why is it useful to be folded? Why is being pleated (replié) useful? If things are folded, it’s in order to be placed inside. That’s an answer at least. — [Interruption; Deleuze apparently looks at an envelope] Ahh, this is the petition for the (university) president that I will read to you later. – It’s in order to be placed inside. I was telling you, well yes, things are folded only to be enveloped. Things are folded in order to be included, to be placed inside. This is very curious. That is, the fold – here we have some non-philosophy — refers to the envelope. The fold/folded thing is what you place in the envelope, in other words: the envelope is the reason for the fold. You would not fold if it weren’t for placing in an envelope. The envelope is the final cause of the fold.
I’m translating into philosophical concepts. Inclusion is the reason for inflection. Inflection is the reason for curvature. Things had to be folded in order to be placed inside. We have not finished our reflection. What is folded – I am going very slowly because I want you to understand as we proceed – what is folded, or if you prefer, what is curved, since inflection appeared as the genetic element of the fold, what is folded, or inflected, or curved by a variable curvature, through this [it’s] enveloped in something. So here’s the first thing that I would like you to grant me. So if you ask me, why, well, just stop, stop asking why. But stop, stop asking why. “Is that ok?” One mustn’t ask why; one must ask, “is that ok?” It’s Leibniz’s world.
So, fine. What is folded is necessarily enveloped in something; otherwise it would not be folded. What is folded is only folded, what is curve is only curve to be enveloped. To envelop, in Latin, is involvere or implicare. Implicated, enveloped, is the same thing. Implicare, what is that? It is the state of the fold that is enveloped in something, that is implicated in something. There’s great beauty in all that, as beautiful as a work of art. And in relation to a work of art, it has an advantage which is that, in fact, it’s true. [Laughter] It is true that things happen like that.
Let’s continue. If you’ve understood me to this point, I’m beginning… What’s folded, plicare, also means implicare, what is folded is placed inside something, is included in something. What’s folded is folded only in order to be within something. In other word, therefore, a little step forward: what is folded does not exist outside that which includes it, what implies it, what envelops it. What is folded does not exist outside that which envelops it.
Let’s continue step by step. What is folded does not let itself be unfolded except ideally. Unfolding what is folded is possible, but it’s an operation of abstraction. What is folded exists only as enveloped within something. If you develop this something, it’s possible, but it’s an abstraction. You make an abstraction, at that moment, from the envelope. In other terms, what is folded exists only in its enveloper [enveloppant]. But then, what progress have we made? This progress is complicated in the fifth remark.
I would say, in this fifth remark, we can conclude: what is folded not only refers to a point of view, — this was the object of the preceding remarks, — what is folded refers to a point of view, but – my fifth remark — what is folded does not refer only to a point of view, but is necessarily enveloped in something that occupies the point of view. There we have not finished assessing the progress we’ve made. What is folded refers to a point of view, but moreover, is necessarily implicated, is necessarily enveloped, implicated within something that occupies the point of view.
We have not finished assessing these little bits of progress since you certainly sense that when we said earlier “the visible is included, enveloped in the point of view,” it was an approximation; that did not entirely work, that it was by approximation that I can say the right angle is in the vertex. But also, I am no longer saying that; it was a way of speaking, we had no other at that moment. Now we can, in fact, specify a bit: by saying that it was almost that [the right angle is in the vertex], but not quite that. For what is folded is not enveloped in the point of view; what is curved or folded, is enveloped within in a something that occupies this point of view, but henceforth there is something that occupies the point of view, and that is what we have not discussed.
And this something that occupies the point of view, henceforth, you will grant Leibniz that at once he can tell us, by commodity and to go more quickly, he can identify it with point of view itself, and likewise distinguish it, on the contrary, from the point of view. Thus I conclude this fifth remark by saying that we find ourselves now faced with two propositions that have a relation of progression with each other. First proposition: what is folded necessarily refers to a point of view since inflection, or variable curvature, refers to a point of view. Second proposition, what is folded is necessarily enveloped within something that occupies the point of view.
The sixth remark would have for object to specify what this progression consists of. [Pause] Up to there, ok? No problems? I’d really like for you to take from this, if that suits you, a method for yourself, for your reading. I insist on that, on this necessity. What I am in the process of doing is nearly an operation for de-philosophizing. I really think that the only completely philosophical reading occurs if you make it coexist with a non-philosophical reading. That’s why philosophy is not at all something for specialists; it’s both something for specialists, and at the same time absolutely a non-specialist thing. Both need to be maintained at the same time. A good philosophy is eminently a specialist thing since it consists in creating concepts, but it’s fundamentally a non-specialist thing because concepts are truly sketches, sketches of sensible intuitions.
So I would like to insist on… Here’s a new example. What is this, something that concerns… You see, inflection was overtaken by the idea of point of view, and now the idea of point of view is overcome by a something that occupies the point of view. I would say of this something that it’s something enveloping, something implicating. The fold is implicated in the implicating. We know in advance that this enveloping is, in general, the subject, or according to Whitehead’s words — we will have to discuss this; we should have gotten there, but the circumstances haven’t…, there’s a kind of parallelism Leibniz-Whitehead –as Whitehead says, the superject. It’s the subject that envelops, the superject that envelops, that implicates. What does it envelop? It envelops what is folded. What is folded? We saw that there were reasons to call it, not object, but objectile, since the objectile was the object insofar as it described variable curvatures or a variable curvature.
So let’s come to terms with the fact that already, philosophically, if we jump from one reading to another, it’s indeed the first time that a philosopher defines the subject in that way as a point of view, a vertex, a superject.
That’s really curious: the subject is what comes to a point of view. [Pause, sound of someone coughing rather violently] And I’m saying that, on one hand, Leibniz will act as if subject and point of view are the same thing, and likewise he will be very formal, very precise, and he will tell us that point of view is the modality of the subject. One cannot say any better that the subject must be defined independently of point of view, it comes to a point of view; the point of view is its inseparable mode, but it’s not the point of view that defines the subject. I get the impression there that Leibniz’s commentators really don’t see clearly this progression and are quite satisfied with the notion of point of view in order to define the subject. And this is not possible. The subject really must… Why? Because the subject is not point of view, it’s enveloping. So it has a point of view; of course, it has a point of view. But to speak in a learned way, in its constitution it is not point of view. As a result of its constitution, a subject comes to a point of view and is inseparable from a point of view, but the point of view is not its very constitution. [Pause]
In other words, what is our progression? First, I say that point of view is a point of view onto an infinite series, [Pause] that is, the point of view is a point of view onto the constituted series, the infinite series constituted by the states of the world. That’s what point of view is. It bears on the infinite series of the states of the world. You see that in my first [upper] floor, my first floor above matter, is perhaps sketched something like different little floors. I’d say that if I limited myself to point of view, I remain in a scale of perception; it’s the world of the percept. The point of view looks onto the infinite series in the states of the world. It’s like the manifestation of visibility, it’s the percept. [Pause] But moreover, I say: the world, the series of the world, the infinite series of the world is enveloped in something that comes to the point of view, that is, is enveloped in the subject.
At that point, notice that the status of the world has changed, no longer exactly as earlier the infinite series of the states of the world because what is enveloped in the subject is what? By nature, it’s what we call the predicate, or if you prefer, the attribute. The infinite series of states of the world has now become the infinite series of predicates of the subject, infinite series of predicates of a subject that envelops them. We have passed from the infinite series of states to the infinite series of predicates or attributes. Indeed, if the infinite series of states of the world is in the subject, is enveloped in the subject, the states of the world are also the predicates of the subject, the attributes of the subject.
All of that involves a lot of things, but we won’t bother with that yet; notably, we won’t bother yet with the formidable and beautiful question: what is an attribute of the subject? I will simply say: well ok, if the states of the world are enveloped in the subject, the states of the world must necessarily be the predicates of the subject that envelops them. You see again the tiny progress: we are no longer in the domain of visibility. So what domain are we in? We have passed from visibility to legibility (le lisible). We have passed from visibility to legibility. From a certain point of view, I see the world, but within me, I read it. Hence this very charming text by Leibniz, Monadology, paragraph 36… [Pause] no, not that, it’s paragraph 61; Monadology, paragraph 61, I’ll read it to you:
“A soul” – that is, a subject — “can read in itself only what is distinctly represented.” It matters little what that means, the text. We are not yet able to provide commentary on it, but we can note that Leibniz does not say and will never say – well, don’t ever say “never”, one has to be careful — when he is speaking rigorously, he will never say – although he occasionally speaks less rigorously to go faster – he will never say that the soul sees into itself; he will say that the soul reads into itself. What it [the soul] envelops are states of the world as predicates of the subject. And the soul reads its own predicates at that same time that under the point of view where it is located, it sees the states of the world.
That’s getting complicated, but it was worth the effort because we are, in fact, no longer in the domain of the percept at the level of the envelopment. At the level of the point of view, we are in the percept, but on the level of the subject-predicate envelopment, we are in the concept. We are in the concept. [Pause] With one qualification, which is evidently fundamental: on the condition of conceiving the concept as individual. The subject is individual. Why? Precisely because it does not exist without coming to a point of view. In other words, what is a subject? It’s a concept, it’s a notion, and each time that Leibniz says “subject,” you should correct him by substituting “notion”, it’s the notion of the subject, in Leibniz, always. And what is a notion of subject? It’s an individual notion, he says. In other words, the concept extends all the way to the individual. Moreover, the individual is the concept, it’s the notion. This is strange; there we are still absolutely incapable of understanding. But it’s interesting; just make a note of what we’ll need to understand for the future.
I can say that Leibniz is without doubt the ancient philosopher, or relatively ancient, who was the most modern from the point of view of logic. If we ask Leibniz what a subject is, he will answer that it’s what is indicated by a proper noun. You know the extent to which, in modern logic since Russell, the theory of proper noun has had importance. We will see it in detail later. Leibniz is the first to tell us that the real name of an individual substance, the true name of the subject, is a proper noun. And it’s without doubt with Leibniz that a grand logic of the proper noun begins.
What is a subject? It’s Caesar, Adam, you, me. The subject is individual. Immediately one steps back, saying, no, it’s the individual notion of each of us because only the notion encompasses predicates. What are the predicates that we encompass? All the states of the world! In other words, what comes to a point of view? What comes to a point of view is the subject understood as an individual notion. What comes to a point of view is what is indicated by a proper noun. I see from a point of view, and I read in the subject. Seeing and reading. Percept and concept. [Pause]
In other words, summarizing this remark rapidly – this was my focus throughout this entire introduction and in all of the preceding meetings — we have indeed passed from inflection to inherence. But at what price? At the price of discovering that not only does inflection refer to point of view, but that point of view refers to something that came to occupy this point of view; the something that occupies this point of view, let us call it: a soul. It’s a soul; a substance, that’s a substance; a superject if we speak like Whitehead and not like Leibniz, since the word is Whitehead’s; an individual notion, a proper noun. [Pause]
There is a huge difficulty that we dropped completely; don’t be surprised not to understand what is currently incomprehensible: what precisely is a predicate or attribute, of this substance or subject? We just saw that to the extent that there is envelopment, the states of the world became predicates of the individual subject. There is no subject except as individual, and that is something completely strange in philosophy. Because before the others, what had been debated in the question of knowing in what sense the soul was individual, not individual, [and] what were the consequences of all this? Leibniz arrives calmly and tells us: every subject is individual, and moreover, the concept extends to the individual and exists only by going to the individual.
None of that goes without saying, but these are our difficulties for later. We are not quite ready to resolve them now. So we proceed to the extent that we are able to resolve, hence my seventh remark. I am taking a short break; was the sixth remark clear? You just have to… If you will, this cannot be clear enough. You just have to grasp the necessity of passing from point of view to inherence, that is, to inclusion, that is, to the idea of something individual that comes to occupy the point of view and that, henceforth, encompasses, envelops the infinite series. I sense that you have understood quite well since you are indicating nothing; you have inscrutable faces. Leibniz would say that in your souls — and we see clearly the difference between point of view and soul — in your soul, you read perfectly; at first glance, you see nothing at all, but in your soul… In the end, the soul is essential. Fine.
Seventh remark, from which, at least, we must know what we are able to understand. We saw what we were not yet able to comprehend, but in the seventh remark, there is a whole series of texts by Leibniz that are found all over, and that now no longer pose a problem for us. First, and we saw this in the previous meeting, the mirror theme: each subject is a mirror of the world. That really is the language of visibility. Moreover, Leibniz adds, each subject is mirror of the world from its point of view. You see that he does not confuse subject with point of view, that is, the subject “mirror of the world” through the mode of its point of view, from the point of view it comes to occupy. We were just insisting that one must understand mirror as a concave mirror. Everything that precedes justifies this, that introduction or adjunction of concavity.
Second point: it’s only a metaphor, and we must get beyond this metaphor. Why get beyond it? Because it settles into the point of view, that is, it sits in the middle of the road. We mustn’t say that each subject is a mirror on the world, because that would seem to suggest that the world exists in itself. Yet, recall that it exists only as folded, that is, it exists only as enclosed in each soul, it exists only as enveloped in each soul or object. Henceforth one must say that, as I was suggesting the last time, rather than a mirror on the world, the subject is a screen on which a film is shown. But as we have noticed, that was still insufficient, since a film has been made and refers to an exteriority, even assumed. From which we invoked rather an opaque table, an opaque table of information where data is registered, without reference to any exteriority.
The world is enveloped in each subject and exists only as enveloped in each subject. This is the sense in which the Monadology will tell us: subjects, individual substances are “with neither door nor window.” They receive nothing from outside. You see why they receive nothing from outside since everything they have, everything they read or everything that happens to them, they envelop it, they include it. In other words, the world does not exist outside of subjects that include it, the world does not exist outside subjects that envelop it. [Pause] And nearly as a symbol of Leibniz, I proposed to you the last time a famous painting by Rauschenberg, where everything we need is located, that is, the surface of the painting as an information surface, as a table of information that one must imagine being slightly concave and a variable curve, a ciphered variable curve is inscribed on it.[6] In fact, this is the representation of a Leibnizian world.
You see that we have passed onward, causing us only to start over another level that we just completed. In this seventh remark, we have passed from texts by Leibniz in which he told us that the subject, the individual substance is mirror on the world, to the other kind of deeper text: the individual subject envelops the world; the world does not exist outside subjects that it envelops. [Pause] Outside subjects that envelop it, that moves us forward yet again.
Eighth remark. For now the time has come to resolve a difficulty: why [are there] several points of view, why several subjects? Why wouldn’t there simply be a single subject that would come to a point of view, and whose point of view would be and would carry onto the infinite series of states of the world, and would thus envelop the totality of predicates; and would have for predicate, would have for the attribute a term: the infinite series of states of the world; a single subject that would be God? In a certain way, this would be Spinoza, a single substance, God, that encompasses, that contains, that includes all modifications, that includes all constitutive modifications of the world, the infinite series of constitutive modifications of the world. This is just to indicate the extent to which Leibniz insists on the plurality of subjects and on the plurality of points of view. In fact, we go from one to the other, from the plurality of points of view to the plurality of subjects.
But yet again, if it is true that a point of view grasps hold of the infinite series of the world, or (and it’s the same thing) if it is true that the subject includes the world, envelops the world — it’s strange! — Why several points of view? I remind you that in our previous meeting, I tried to propose an answer to you, which is: the infinite series is essentially susceptible to an infinity of variations. [Pause] The variations of a series, we’ll have to come back to them, the variations of a series. I was telling you [that] we have to conceive of them in every manner: rhythmic variations, melodic variations, opposite movements, when the ascendant becomes the descendant and vice versa, retrograde movements when you begin at the ending, and you obtain another series. So there is an infinity of variations of the infinite series.
So must we say that each subject responds to a variation? Without doubt, notably there are not two subjects that begin the infinite series with the same term, nor that end it the same way. That’s why there is necessarily an infinity of subjects. But then there is also a reason, which is: ok, each subject envelops the infinite series. Yes, each subject envelops the infinite series, the infinite series of the world, but each subject is defined by a region of this series, the region that it can read, that it can read clearly and distinctly. I express the world, or if you prefer, I envelop it, I express the world in the manner of a mirror, and I envelop it in the manner of a subject. And then you as well — there is no reason — we all express the world. Well, fine, only that we do not clearly express the same portion. Each subject has a finite capacity for clearly reading, [and] the rest is what? We must say that each subject is, literally, dyslexic, for the entire series.
You see who this great reader is. The great reader of the world is God. But we, individual subjects: you’ll tell me: but God is an individual as well; sure, God’s an individual, but that is going to cause us problems, the sense in which it’s an individual, and the sense in which we too are individuals, but we haven’t gotten there yet. God envelops the whole series of the world clearly and distinctly, but us? It’s already pretty great, we have a little portion of reading clearly and distinctly, the rest we blabber. We envelop the entire world, but confusedly, obscurely, illegibly. And we have our little portion, our little clear and distinct glimmer, our little glimmer on the world, our little world region: my very own room. That’s already not so bad, my own room! We shouldn’t ask for much more. I express the entire world, I envelop the entire world, but I only clearly envelop a small portion.
What distinguishes me from you, you from me? It’s that we don’t clearly express the same little portion. You’ll say: we have a common sphere, so that’s how we belong, for example, to a same time, that we are co-living. You understand, each of us has his/her common portion, but it can overlap the neighboring one; for example, when we meet in this location with security bars, [Laughter] we clearly express a little portion of space. But if we disperse, each of us again finds his/her own room. We can come together, we can separate, like an accordion. [Laughter] But in every case, our portion of clear envelopment, of legible envelopment, is extremely limited.
So there are necessarily several points of view, or if you prefer, there are necessarily several individual substances. With this, now I have my answer because, even if it’s true that each individual substance envelops the entire world, it can only read clearly a portion of the world, which is necessarily distinguished from the legible portion of the world, the other. And at the same time, that is not adequate because there we are going to find ourselves facing an impossible problem. We have to manage as best we can. That this is a great problem for Leibniz, that’s what always fascinated him: individuation. That’s his problem. Fortunately we still have a little dissertation he wrote, the exact title written in Latin, since they wrote in Latin at that period in the university; the title is Dissertation on the individual principle, on the principle of the individual. He was 17 or 18 years old. So it’s the equivalent of a … — They were more precocious back then. — It’s a little DEA [masters thesis], it’s a little essay, and it’s not by chance that from the start, this was his problem. So he grasps onto it, and it’s a very interesting discussion relating to certain philosophies of the Middle Ages, with Aristotle, but especially Saint Thomas [Aquinas] and Duns Scotus, and that indicates something that remains his focus in all his philosophy all the way to old age. Fine.
We are going to find ourselves in an impossible situation because, you see, what constitutes individuation for Leibniz? First answer which comes to mind: point of view. In fact, in the notion of point of view, he offered a sufficient consistency such that this might be a possible answer. It’s completely new, defining individuation by point of view. There had to be the means for doing so; one had to pass through this entire theory of inflexion, of curves. Answer: that could be said, but it’s not the final word; why? Because, strictly speaking, point of view cannot define individuation; point of view cannot define the individual since point of view is only the modality of the individual. It’s only the mode of the individual.
So, a second answer: let us assume that each individual envelops the entire world but understand that one only envelops clearly and distinctly a reduced portion of the world. So it’s this reduced portion that would explain the individual, specifically two individuals do not have the same clear and distinct portion. But that doesn’t work either. You sense that it’s obviously because the individual is individual that it has a portion of the world. I cannot define the individual by the portion of world that it expresses. On the contrary, it’s because it is an individual that it only has a limited portion. That doesn’t work. So, what defines the individuality of the individual? How does one define individuation? We already have two possible answers, possible but not satisfying. Fine.
So, let’s continue: the entire world is enveloped in each subject, the subject is the individual, it is individual substance or the individual notion, it’s the concept proceeding all the way into the individual. It’s the individual notion, it’s what deserves a proper name; the subject is what deserves a proper name. You sense that in any case, it’s a strange tale, this logic of proper names, a strange tale because, imagine it: however little you might know, at what point does that [logic] breaks with all philosophy, at what does point it delivers something new? You imagine Plato having… No, that presumes that you know Plato, Plato is Ideas. It occurred to Plato to ask: are there ideas of individuals? Is there an idea of Socrates, an idea of Alcibiades? All that. But he encounters problems… Whereas Leibniz arrives and tells us that the notion is individual, that the concept goes all the way into the individual. Why can he say that? We have to put this aside because we have to answer, to answer urgently, to answer today. Perhaps. I hope we’ll have time, but we have to answer it today. Why?
It’s quite extraordinary, to tell us… Just consider Descartes. All Cartesians never stop reflecting on the “I” in Descartes, “I think”. What is this “I”? There is a very interesting thesis written on the notion of the individual notion in Descartes, but it’s an extremely difficult subject because one has to research deeply into his texts. Is the “I” of “I think” an individual subject? No, it’s difficult, we cannot say that it might be indicated by a proper name. “I think” is not: me, Descartes, I am thinking! That’s what Leibniz tells us: “subject” can only have one meaning: what has a proper name. Caesar, Augustus, you, me. The subject is individual.
So I’ll start over. Each world is enveloped in each subject; we have seen how subjects were supposed to be distinguished, by this little portion. Notice that we already have two answers: by the variation of the series, or (which is the same thing) by the little portion. I am saying that it’s the same thing in the long run because, as the clear and distinct little portion enveloped in each subject varies according to the subject, it’s a variation of the infinite series. Hence, the two answers work well, but they work well by us understanding in them what seems to be their insufficiency. If I say that the world exists enveloped in each monad, … eh [Deleuze corrects himself], if I say that the world exists enveloped in each subject, well fine, it exists enveloped in each subject. But you sense, just as I was saying earlier, we are going to rediscover [that] it exists enveloped in each subject. It exists only as enveloped in each subject. The world does not exist outside the subject that envelops it, the world does not exist outside the subject that implicates it, that include it. [Pause] Might we say that this is idealism? Given we have to say something… the world does not exist outside the subjects that implicate it. It’s going to be very difficult to say even that it is idealism, one has to be wary. Why? Since there is fortunately an irreducible plurality of subjects.
What do I mean? I mean, look at the transformation of problems that Leibniz imposes on us, I’d say, on two levels: for the relations that I might call relations of perception, visible-point of view relations, are substituted the relations of points of view among themselves or, what is really the same, for the world-subject relation is substituted the relation of subject between themselves. The world does not exist independently of subjects that envelop it; the world exists only as enveloped in subjects. Yes. But then the fundamental problem becomes: what is the relation of subjects between themselves since objectivity and reality of the world are strictly muddled in the relation of subjects between themselves? [Pause]
Is everything ok? I’d almost prefer that here we take a small break if… You see, what I have left is a ninth remark that I’d like you to reflect on during a short break. My ninth remark: finally the moment has arrived, we have to call it, like in English novels when there are chapter titles, “How it happened that Leibniz speaks to us about the notion of Monad”. How does the monad, the typically Leibnizian notion of Monad, develop from all this? This is why the term monad, up to now, is something I could not pronounce. Listen, take a break, but please, come back. Let’s come back at … [Interruption of the recording] [1:32:08]
Let’s make clear this passage [Brief electronic buzz] from inflexion to inherence. [(1:32:19) 20 second interruption, electronic buzz, in the WebDeleuze recording; text from WebDeleuze] Is there a question? Any problems? [Return to the WebDeleuze recording] … He [Leibniz] says the world only exists insofar as it is enveloped in subject, not because of… [Pause, Deleuze does not complete the thought] eh?
A woman student: [On the subject of ignorance, Deleuze repeating the question]
Deleuze: Doesn’t being ignorant imply, if I understand correctly, something that is outside the subject, since the subject ignores it? Leibniz’s answer — that we cannot yet evaluate because we will spend several classes on this — is that there is no ignorance; there are only degrees of awareness (conscience), there are degrees of awareness scaled to infinity. And, in fact, your comment is very good: if for Leibniz there were ignorance, we would have to say that there is something in the world that escapes the subject, that is not enveloped in the subject. But for him, there is no ignorance; there are only degrees of awareness more or less clear, more or less obscure, more or less confused, etc., that is, either it is clear and one knows or it is something like – as it’s frequently said – rumbling (rumeur). When you say, I don’t know, it’s still a rumbling, it’s in the state of a wave breaking, a cosmic wave breaking in the depths of each of us. So perhaps all subjects communicate through this cosmic breaking wave, but it is not itself outside subjects. But your comment is quite right. Leibniz could not get by if he did not elaborate a theory that isn’t a theory of conscience/awareness, but of an infinity of degrees of awareness.
A student: [On the points of view that go to infinity; an electronic noise blocks most of the question, continuing into Deleuze’s response]
[Text from WebDeleuze] Deleuze: It’s indeed a matter of an infinite multiplicity. There is no opposition between multiplicity and infinity. For Leibniz, infinity is the necessary status of the multiple, the multiple goes to infinity. No problem there. All the more so since, for Leibniz, there is no finite multiplicity. [Return to the recording] There is only infinity in Leibniz. But here as well, that brings up things that we have not yet considered or discussed, that we will have to see later.
Another student: I don’t understand the difference between an individual notion and the concept that goes all the way to the individual.
Deleuze: No difference at all, these are two equivalent expressions. I’ve been saying that I accumulate, I sometimes multiply expressions because it seems to me that some among you can understand one but not the other, so best to add quite a few.
Well yes, I’m exactly in … I am trying to explain Leibniz to you. I am exactly in the situation of a blind person trying to tap into the clear area (portion claire) of each of you. But the clear area of everyone is very different according to what? This explains everything: according to your own background (votre culture). Those of you who have read some of Leibniz have a clear area – this isn’t meant to annoy the others – a greater clear area than those who have read nothing at all. And yet, to the extent that all subjects are in each subject, Leibniz really has to be part of you, even if you have read nothing, part of you in the state of rumbling (rumeur). You have heard that Leibniz said something about a monad. He employed the term “monad”. So you could be reduced to this miniscule part, and then there are some of you who have read Leibniz, and so they have a greater portion. But sometimes I cannot complete this if … What I’d like is not at all that… It’s just that each of you, your personal task is: to capture some Leibniz in your clear area, to the point that… Why would there be progress through Leibniz? Why is he one of the first philosophers who advance the notion of progress? It’s because each individual substance has a power, alas, rather restrained, of enlarging its clear area. That’s what it means to learn; it’s to increase step by step along the scale of degrees of consciousness. So fine, we have come to the ninth remark…
George Comtesse: [Question entirely cut from the WebDeleuze recording, but included in the WebDeleuze transcript] How do you understand the following thing as regards Leibniz: he both affirms the subject as individual substance, the subsistence of individual receives nothing from the exterior, and yet he defines the individual subject by the proper name which, in fact, implies receiving something from the exterior? [Return to the recording]
Deleuze: Ha, let’s see. I say that one has to distinguish – here I am inventing nothing because simultaneously, I can recall the texts, it’s great (c’est une fête) – one has to distinguish the nominal proper name, which is the name of convention. Whereas Caesar is called Caesar, and Augustus is called Augustus, and each of you is called what you are called, that’s a conventional operation which, to some extent, can be said to come from the exterior, but without at all affecting the subject, according to Leibniz. Moreover, he has a text in New Essays on Human Understanding, a little chapter devoted to proper names where he says: proper names derive from common names, these are names of kind [espèce] and genre. For example, you are called “laborer,” it’s an example, someone with the name “laborer.” This means that he doesn’t believe in proper names in this sense.
When I say: the proper name indicates the individual substance; it is something that the conventional proper name symbolizes, but only manages to symbolize. The proper name means: what is subject is an infinite aggregation of propositions. For example, I say: x has crossed the Rubicon, has been assassinated by his stepson, I don’t know. There we have a propre name. So there the individual subject, I can say, is designated by a proper name that is his internal determination. So if you say to me: what is the proper name of Caesar, I answer: it’s the internal determination of Caesar. We will say that by convention the internal determination of Caesar, that aspect through which it is an enveloper (ce par quoi c’est une enveloppante), this internal determination is conventionally designated by the proper name “Caesar.” It’s a common name applied to an individual substance.
So, the ninth remark. We will have done a lot today. Where does the “monad” come from, a strange name? And in fact, the monad, you can’t do better since you open Monadology and the first word there, after the title, in paragraph one: “The monad, about which we will speak here is nothing other than a simple substance.” That sounds really bizarre, monad, to the point that, for us, we scholas, each time we hear the word “monad”, we add, “as Leibniz said.”
And where does that come from? Let’s note that he starts using it rather late; he starts using it rather late. Specialists locate the word’s first use in 1697, so there was an entire part of Leibniz’s work in place, in which he spoke about individual substance, soul, individual notion, and not a word about “monad”. That must have really pleased him, but he didn’t invent the word. The word “monad” was in consistent and systematic philosophical usage in the works of some very interesting authors that were neo-Platonists. The Greek word monas yields monad, because the declension is in “d” (monado), the Monas. If one looks hard – I am saying things that I am not entirely sure about because this is from research that I haven’t undertaken and I don’t have the necessary dictionaries. The word is found in Plato. This word, while I’d really like to verify it, is found in Plotinus.
But not at all this sense. In what sense is it? In the sense of unity. Not just any sense of unity, but in a variable sense of unity. In any case, I can say, I think, that neither Plato nor even Plotinus, who is the founder of neo-Platonism, made systematic use of the word. On the other hand, systematic use arrives among the neo-Platonists, that is, the disciples of Plotinus, among whom the first great one is Proclus, Proclus.
Monos means “a single” (un seul), one all alone. One sees this in reading Proclus, notably a very short book by Proclus, called Elements of Theology, one sees in Elements of Theology that monas designates something very particular because monas is unity, but there is another term. Monas is unity, but the One (capital O). The “en” (an, one) in Greek is not stated as monos, but as En, E and n, the En. And there is a Greek substantive derived from En which is Henas, that we translate as Hénade[7]. So it’s curious, you see: monad, hénade, monas, henas, what is that? Either that means nothing, and is useless, or monad indicates a very special type of unity, which is going to unfold, and that will receive status in neo-Platonism, an increasingly rigorous status starting with Proclus. So that’s what I think we need to know.
We need to know a little bit more about this: what is this particular sense of unity? Proclus tells us a lot about a certain stage of the One. You know that if we had to define it, neo-Platonism is a philosophy building as a fundamental category the One and the Multiple. This is its main concern. Starting with Plato, there are two great directions: Aristotelianism that draws the couple form-matter from Plato, and neo-Platonism that draws forth the couple One-multiple starting with Plotinus. The Aristotelian tradition will consider components of form and matter which will yield solid figures. Plotinism, or neo-Platonism, will consider components of One and multiple that will yield figures of light. If there is a figure in Plotinus, it’s that of light. He is the great philosopher of light. Before things, there was light, and light emanates from the One, from the En. Parenthetically, but here I am getting too learned, in the Pythagorean tradition, Monas is fire.
You might wonder why I am saying that. Because in Proclus, we indeed see that Monas does not designate just any kind of unity. Generally speaking – I’m not saying things that are very precise — Monas is reserved for two special characteristics. It designates a stage of the One that is already massive in virtual multiplicity. And in fact, neo-Platonism will consist of a series of floors where, on the final floor, way on top, there is the One or Light, the One above all else, the One about which one can say nothing. The One more than Being. The One that is truly one, about which one cannot even say it Is, the One above Being, and above all else.
And starting from this One, in which form — there we have the philosophy of Plotinus, not our object of study this year — I won’t even say flows from it, but trickles from it like light, like light rays, streams from it light rays where we can locate degressive stages (stades dégressifs) of the One. And one of the stages of the One is when the One ceases being purely One in order to envelop, to implicate – involvere say the Latin translations – to envelop some multiple, and this enveloped multiple is of the virtual multiple, not yet passed into act, huge unities of a virtual multiplicity. And under the Monas, just like above the Monas there is the One, the One that is only One, the One without multiplicity, the purely One One; below the Monas, there is a one that is nothing other than an arithmetic element, a numerical element in a multiplicity that has passed into act, in an actual multiplicity. That’s the numerical unity.
So there we have the first characteristic, very approximately, because Proclus is otherwise quite complicated. In brief summary, I say: monas designates first of all unity, when unity is full of a virtual multiplicity. In second place: monas designates unity when it is the principle of a degressive series (une série dégressive). For example, in the text Elements of Theology, I read: “The monad, serving the function of principle, engenders the multiplicity which is appropriated to it. This is why each series — neo-Platonists are the first to create a philosophy of series — is one, and each order is One.” In the Greek text, it’s En. You see: that monad, serving the function of principle, engenders the multiplicity which is appropriated to it; it’s why each series is one and each order is one. From one end to the other, it [the one] receives from its monad its descent toward the multiplicity, for it [the one] is neither of order nor of series if the monad remains in itself infertile. In other words, la monas is unity as principle of a degressive series.
Example: from the pure soul flows the souls of the Gods, and even the souls of the Gods themselves form an entire series. There the neo-Platonists surpassed themselves because there is the Jupiteic soul (l’âme Jupitéique), the dried-out soul (âme aréique), the titanic soul, the souls, the souls, the souls, the souls. The procession of souls is sublime, but this hardly matters. From the pure soul flow the souls of the Gods. From the souls of the Gods flow the souls of men, from the souls of men – which are reasonable souls – in certain cases (sous certains chefs) flow the souls of animals, etc. etc. … You have a degressive series. The principle of this series will be called Monas.
Similarly, if you make a series of the Enas, [a series] of the Ones, of unities, you place on top: the One more than Being, then the One which encompasses, which envelops a potential multiplicity, then the One that is nothing other than a unity in an actual multiplicity, you have a series. You will say that there is a Monas as principle of the series of Enades. You see that all this is really beautiful. So I say, to stay with Proclus and neo-Platonism, the Monas designates the unity, but under two conditions, that the unity be full, thick (grosse) with a virtual multiplicity that it envelops. Second condition: that it be the principle of a degressive series that flows from it. I don’t need to return to what we did in order to say that these two traits suit Leibniz marvelously.
A woman student: What is the reference in Proclus?
Deleuze: In Proclus? Ah, paragraph 21. But at the same time, there’s a constant. Monad is constantly present there. But on the other hand, Proclus is… Among the rare things that we still retain from Proclus, there is an admirable commentary on Parmenides where his thought is much more developed. That’s quite evidently a summary of lessons. But in the commentary on Plato’s Parmenides by Proclus, there is an entire theory of the monad, quite lovely.
You see what suited Leibniz. I would be astounded if he knew this word [monad] very late; he knew it the entire time, but it must have been in a kind of inspiration, he told himself suddenly: My God! Why haven’t I been using this word? It’s exactly what I need. And at the same time, he is going to transplant it entirely, for he will indeed retain its two traits: the monad is a unity as principle of series, and a unity as filled with a virtual multiplicity. As we say, filled with a virtual multiplicity since from his viewpoint, it is the opening onto an infinite series. So this suits him perfectly.
But it still would be quite properly grotesque to say that Leibniz yielded to a neo-Platonic influence, since it is entirely true that Leibniz succumbed to neo-Platonic influence, but on entirely other points than this one, because by using the word “monad”, he gives to it a situation, another completely original function that neo-Platonists knew strictly nothing at all. And if you will, if I were to sum up, Leibniz tells us what would be monstrous and incomprehensible for a neo-Platonist: the monad [as] the individual notion, the individual itself, the individual taken in its notion; or, if you prefer, it’s subjective unity, it is subjectivity, it’s the subject. Which amounts to saying: unity as monad, is the individual.
And how did he get to the point of saying that? I believe that we have to see the two points that are strictly linked in Leibniz, which neo-Platonism does not grasp. These are the infinite and the individual. [Pause] Why are these two points linked? Because Leibniz tells us, the individual envelops the infinite. You will find this text in New Essays on Human Understanding. Alas, I forgot to note the paragraph number; I only noted down the page number. I have to give you the paragraph reference so that you can read it yourself, but it’s very quick, he doesn’t analyze what he means, so it’s not terribly important, but the very text is therefore by Leibniz: “the individual envelops infinity.” What does that mean? It means something quite simple, but which, in my opinion, could only appear under a perspective obviously in Christianity. What does it mean? You’re going to understand. What does it mean, the individual envelops infinity?
We can understand easily the individual-infinite relationship if we apply the notion of concept. How is a concept defined? Through this: there is an understanding and an extension. The understanding of the concept is the aggregate of predicates that are attributable to it – that’s what you call the understanding of a concept. The comprehension of a concept is what thing is designated by the concept, the aggregate of attributes that are predicable to it. For example, the lion is a courageous animal. I would say that “courageous animal” belongs to the comprehension of the concept “lion”. Let’s add other traits of the concept’s comprehension: “having a mane”, “roaring”, “sleeping a lot”, etc…. But you will object: you are forgetting the essential point. That’s on purpose: I am forgetting the traits by which we define the concept “lion”. Besides I don’t know them: mammal, I don’t know what, the essential characteristics, that’s all I know.
So comprehension is the aggregate of predicates that one can attribute to the object of the concept.[8] Ok? The extension of the concept is the number of copies (exemplaires), the number of objects subsumed under this concept, placed under this concept. How many lions are there? “How many lions are there?” responds to the extension of the concept. Fine.
The logic of the concept tells us what? It tells us that the more the extension diminishes, the more the comprehension increases, and vice versa. The more the extension diminishes, what does that mean? The more the extension diminishes, that is, tends toward one, the more the comprehension increases. Or the more the comprehension increases, that is, tends toward infinity, the more the extension diminishes, that is, tends toward one. These are things you have to know. An example, the concept “lion”. I suppose that currently there exist ten thousand lions. I give the extension as 10,000, the comprehension as this, that, such and such predicable attributes of “lion”. I make a step forward in a movement we can call the specification of the concept, another thing you have to know. I take the lions of the Sahara, belonging to the concept “lion”. The lions of the Sahara all have the traits attributable to “lion”. These are “lions”, but moreover they have more traits, specifically the particular traits of lions of the Sahara that other lions don’t have. That lions from… well, from elsewhere, don’t have: for example, having at the end of the tail a thicker clump of hair than for others. I would say, this is a trait of the comprehension of lions of the Sahara that other lions do not display, that I add on. I would say that lions of the Sahara have a greater comprehension than lions in general, but for that reason, they have a lesser extension. There are fewer lions from the Sahara than there are lions [in general]. Good. Let’s continue.
Biologists, or rather natural historians, naturalists can be led to say “Aaaah, but in such and such an oasis in the Sahara, there is a kind of lion that is not found in other regions of the Sahara.” That will make comprehension greater and extension lesser. Look at this quite simple great principle: given a concept, its extension and its comprehension are in inverse relation, that is: the greater the comprehension, the smaller the extension. You follow me because this is not going to be easy.
What happens? I hesitate, I am going to do what I never want to do, a kind of overview of philosophy, and here it’s absolutely necessary. What was happening regarding the concept, regarding this law, before Leibniz? I think that all philosophers – to my knowledge, without exception (although there were some very complicated texts) – in general, without exception, all philosophers told us: yes, but the concept ceases at a certain moment. There is a logical moment at which the concept ceases, that is, there is a logical moment at which the concept’s comprehension ceases. Below this, that’s no longer from the concept. You have to find an end point at some moment. Example, I come back to my lion: a lion from a particular oasis, African lion, Saharan lion, a lion from a particular oasis in the Sahara … [Interruption in the WebDeleuze transcript, with the notation “end of tape”]
… [Leibniz] says: in that, you won’t reconnect, you can go all the way to that indefinite – I am weighing my words – you can go to the indefinite, you will be able to prolong the concept’s comprehension indefinitely (à l’indéfini), you will never reach the individual. Why? Because the individual depends on accidents of matter and not on traits in the concept. As a result, however far you may go in the comprehension or the specification of a concept, there will always be several individuals under the concept. Even if this were only by right (en droit), there will always be several possible individuals. Even if I reached a state of the world in which only a single lion survived, the concept does not go all the way to its individuality. In fact, by virtue of the concept, there will always be an infinity of possible lions. The concept does not go to infinity. You can continue to the indefinite, you can continue indefinitely to push the concept’s comprehension, you will never reach the extension = 1. Any concept qua concept is liable to have (est justiciable de) an extension = x.
But then, what constitutes the individual since it isn’t the concept? In other words, the concept is always general. It always has an extension. The Saharan lion has a concept, the lion of a particular oasis has a concept, as far as you want, but individuation is not the same thing as specification. You can specify your concept as long as you want, but you will never reach the individual. What constitutes individuation? Certain Aristotelians answer: it is not form, which is form of concept; it’s matter, it is accident. In other words, they find themselves faced with the following problem: the individual is not an ultimate form that might be relatable (rapportable) to the concept. The individual is not an ultimate form; in other words, the concept ceases before the individual. You can pursue it indefinitely, but you will not reach the individual.
Hence this problem: what constitutes individuation since it is not a complicated specification? So I tell you: the first answer [is]: accidents, contingencies have to be made to intervene, that is, attributes that do not belong to the concept. Another answer, much more complex: individuation indeed depends on the form but is not itself a form. This is notably a very lovely theory of individuation from Duns Scotus, where individuation is defined. He tells us: this is not a form which is added to form as a kind (espèce) is added to genera (genre). In other words, there are no forms of the individual. However, individuation is not an accident of matter. He tells us, it’s the ultimate act of form. This isn’t simple: this isn’t a form that is added to form; it is the ultimate act of the final form. What does it mean, the ultimate act of the final form? Well, this isn’t the focus here, it would be another course. This is to tell you, simply, that everyone agrees about this: that in the long run, the form or the concept, in one way or another, stops before [reaching] the individual, does not link up with the individual, even if I can push indefinitely the concept’s comprehension. Fine.
Let’s have Leibniz speak. Never has anyone witnessed so much calm in the presence of so much daring. He will explain that there is no indefinite. There is only an actual infinite. He will immediately define the individual as the concept; the individual is the concept. The individual is the concept insofar as its comprehension is infinite and its extension unity. A concept whose comprehension is actually infinite, you see it’s the actual infinite that allows him to say that. If he said: the individual is the concept whose comprehension is indefinite, that would make no sense. It’s because there is actual infinite everywhere according to Leibniz that this definition is possible. It was therefore impossible for the neo-Platonists who had no idea of the actual infinite.
My difficulty (faute) is not to be able to tell you yet what the actual infinite is. But no matter, it suffices that you have a kind of little affective feeling. He tells us: the individual is the concept; not only do I reconcile them, but they are identical [Return to the WebDeleuze recording] because the individual is the concept in so far as it has an infinite actual comprehension, and therefore an extension equal to 1. You see, the individual envelops the infinite. What is it that lets him say that the individual envelops the infinite? Where does he get this idea? We saw this, there at least for once we have seen this. It’s the whole preceding theory, in which the monad, that is the individual substance, envelops the infinity of predicates that the states of the world constitute. So the concept goes all the way to the infinite, or the notion is individual, you see, it’s the same thing. The monad is the huge individual unity of an infinite multiplicity.
In other words, if I had a mathematical symbol to propose for the individual, I would say – you are perhaps going to understand everything thanks to this – [Deleuze refers to a drawing on the board] 1 / infinite, one over the infinite. You may say, what interest is there in this? You are going to see why it’s of interest; it will be an amazing interest! And after we can’t go farther! Once you’ve understood the interest, we will go home to bed. [Laughter]
All this is curious, this individuality, this notion of individuation that invades philosophy. Why do I say [that] this presumes Christianity? Because Christianity, under its philosophical form, [Another interruption of the WebDeleuze recording, text furnished by the WebDeleuze transcript] is well known for confronting a very interesting problem that has not lost its pertinence today, specifically, the proofs of God’s existence. And the proofs of God’s existence, it is well known – it won’t be greatly discussed although it interested Leibniz greatly – the most noble is called the ontological proof. And the ontological proof, it is well known that it is stated as follows: I define God (without knowing if he exists, otherwise this would not work) as and by the infinitely perfect, the infinitely perfect. I conclude from this that God exists since if it didn’t exist, it would lack a perfection. You follow me. This is why we all think that God exists… Where we get into trouble is when someone like Leibniz, who nonetheless is quite in favor of the ontological proof, says: one mustn’t move so fast because what does “infinitely perfect” mean precisely? For the proof to be conclusive, says Leibniz, one must at least show that the infinitely perfect does not envelop contradiction.
Assume that the infinitely perfect might be a notion like a squared circle. In that case, I couldn’t conclude that the corresponding being exists. I could not; it would not be reasonable. The “greatest speed”, says Leibniz, is a contradictory notion; why? Because, by virtue of the definition of “speed,” with a given speed, [Return to the WebDeleuze recording] there is always a greater possible speed. So, the greatest speed is nonsensical (un non sens). What tells us that the infinitely perfect Being isn’t nonsensical? So he says: ontological proof can only conclude for the existence of God if it first shows that the absolutely perfect is a coherent notion, that implies no contradiction. Leibniz takes on the task of showing this. He is going to show it by showing that the infinitely perfect is l’omnitudo, the aggregate of all possibilities, and that the aggregate of all possibilities is possible. — I seem to be wandering off, but you will see that this will sneak back on us at the moment we least expect it. — The aggregate of all possibilities is possible, that’s what had to be shown for the ontological proof to be able to draw a conclusion out of the infinitely perfect to the existence of a corresponding God.
Great, and there we are! But if the aggregate of all possibilities is possible, in that case God necessarily exists, because the ontological argument works. Specifically: God is the infinitely perfect being, if it didn’t exist, it would be lacking a (form of) perfection; thus, I would contradict my definition in refusing him existence. So the ontological proof legitimately stands, according to Leibniz, on the condition of having shown that the aggregate of all possibilities was not nonsensical, provided that – parenthetically, he reproached Descartes for not having completed the necessary demonstration – he can draw a conclusion [about going] from the aggregate of all possibilities to the idea of a necessarily existing being, a singular Being, individual, singular, unique, called God. The ontological proof, according to Leibniz, thus goes from the infinite aggregate to the singular existence of a corresponding being, to the singular existence of a corresponding reality called God. You see?
In other words, what is God’s expression (formule de Dieu)? I am going from the infinite aggregate of all possibilities to the singular existence of the corresponding being, which is endowed with all perfections and that I call God. Hence the proper name God. Everything still occurs between proper names. What is the mathematical formula for the ontological proof? The mathematical proof for the ontological proof is infinity over 1, Infinity / 1. Why? Let’s return to his reasoning.
Infinity equals the aggregate of all possibilities. From this I conclude, if the aggregate of all possibilities is possible, that a corresponding individual being exists. I go from the infinite to the individual. In the case of God, I would say: the infinite envelops individuality. That’s the ontological proof. If we were to come up with a suitable corresponding formula, the ontological proof, the proof of God’s existence is: the infinite envelops individuality, understood as the individuality of God, the singularity of God, Infinity over 1. For other reasons, you have just seen why the monad had as mathematical symbol 1 over infinity (1/infinity). In fact, this time I start from individual unity, and this individual unity encloses the infinity of predicates, one over infinity.
I would say, from God (infinity/1) to the monad, to the individual subject (1/infinity), what is that about, what is the relation? Here it is. That allows me to say that the monad is the inverse of God. Inverse? Inverse? What is that? Inverse means something very precise, that you have to know about. I mean, it’s in this sense that philosophy implicates a kind of knowledge (savoir). One has to know the sense of words. Why, for example, don’t I say “the opposite”? Why don’t I say that the monad is the opposite of God, or the contrary? This is not without a reason. Logic presents us with a very strict table of opposites, and we know that opposition by the contrary (contrariété) is not the same thing as opposition by contradiction. We know that there are all kinds of (forms of) opposition. Is inversion perhaps a type of opposition? But not just any old type. In this you simply have no right to do so. As much as you have the right to create concepts if you can, equally you have no right to omit the necessary science from philosophy, exactly as if you were doing mathematics, you would not have the right to ignore the science necessary for doing mathematics.
So precisely here, since we are talking about mathematics, in math there is the notion of “inverse numbers”. Given a whole number, 2, what is its inverse? The inverse of 2? The contrary of 2 is -2. The inverse of 2 is a half. Why? [Deleuze goes to the board] Because there is no whole that you cannot write under the form numerator/denominator. So the number 2 is 2 over 1; the inverse of 2 over 1 is 1 over 2. The denominator becomes the numerator, and the numerator becomes the denominator. Thus 1 over 2 is the inverse of 2.
I am saying, strictly speaking: the monad 1/infinity is the inverse of God infinity / 1. I mean, this is literally true. So everything happens at this level, everything happens between individuals. Once we have said that there is the infinite everywhere, but simply this is not the same infinite. You understand that when Leibniz tells us: everything is infinite, and all is infinite in action (en acte), there is no indefinite, there is only the infinite. That does not prevent there being all kinds of infinites. The infinity of God is not the same as the infinity of the world enveloped by each individual, not at all. But I can say that the individual is exactly the inverse of God, each time you have the infinite and individuality. It’s through, if you will, the couple infinity-individual that Leibniz is going to shake up all of philosophy. He causes the concept to go all the way to the individual. Fine. He causes the concept to go all the way to the individual. He is quite precisely the first to reconcile the concept and the individual since the comprehension of the concept not only can be extended indefinitely, but all the way to infinity.
And all that seems quite arbitrary. That’s what he decided, but understand to what that commits him, and this is the point I wanted to reach because… When others said, and didn’t see the means of extending the concept to the individual, when they thought that the concept had to stop before the individual, even if one could indefinitely extend its comprehension, it’s because they had a really odd way of thinking about the problem of individuation.
And in this please allow me to speak almost on my own behalf, but in the hope of having you understand something in Leibniz. It seems to me that all the theories of individuation before Leibniz had a catastrophic presupposition. Their catastrophic presupposition was that individuation comes afterwards, after the specification. Specification is the division of the concept in genres, kind (espèces), smaller and smaller kinds. And it was under stood, and it seemed, and it was quite simply assumed that it was entirely normal to begin by the most general, and that was Plato’s fault, the fault of others, but finally, nobody’s and everybody’s fault. They start off from the most universal, so necessarily, they don’t link back up with the individual. Since individuation is not a specification, it’s not by extending specification indefinitely that one will find the individual.
So as they were telling themselves that the individual comes after the final kind (espèce), that the individual comes after the tiniest species, they are lost in advance, they will never be able to close the gap between the tiniest species and individuals. The contrary would have been required, only they didn’t have the means to do it. They had to become aware that all specification, that is, all assigning of kind or genre, I don’t say presupposed individual objects – that has already been done, it’s what is called the nominalism – no, it’s a matter of saying something else, but that all specification presupposes processes of individuation that, henceforth, cannot occur according to this type of specification. In other words, it’s individual that is first. [Pause]
If individuation is primary, in fact everything is comprehensible. The double individual-infinite relation, I say double relation: in the God’s case, infinity/unity, in the monad’s case, unity/infinity. In this sense, we take up this literally inverse relation of the monad and God. For you see, notably, that allows us to pose all sorts of problems: if it is true that all individual substance is a point of view, is God a point of view? Can I talk of God as a simply infinite point of view? Is God something other than a point of view? Very strangely, the texts of Leibniz waver there. No doubt one could be both: God is indeed a point of view that passes through all the points of view, but at the same time, the Leibniz’s richest texts suggest that there are God views (des vues de Dieu) that engender points of view, but that there is no God point of view. Do you understand in which sense there is not God point of view? It’s that infinity / 1 is not a point of view formula. The point of view formula is 1 / infinity. That does not keep God from penetrating all points of view, precisely because the points of view are inverse from God’s position. The point of view position is inverse from God’s position.
So finally, what’s left… — We’re already wiped out – What remains for us is finally to say that we’ve completed our first part [of the course]. We have more or less shown how the upper floor developed. All that we can simply conclude is that, in fact, it’s nonetheless an absolute reorganization of the tradition of two worlds. There are indeed two floors, but is this still two worlds? On the upper floor, there are individual substances that envelop the world. They envelop the world since they have for attributes all the states of the world. On the lower floor there is matter and its thousand pleats (replis). What is there between the two? I have shown how the two floors communicated (parenthetically, everything is fine). I showed this since I showed that inflexion participated both on the upper floor, since it’s the ideal genetic element, and that it’s starting from inflexion that we reached point of view and inherence, it belongs to the upper floor, but refers as well to the lower floor since it is the genetic element of pleats (replis) of matter. So the two floors communicate. This is completely new, which means that, on the upper floor, there are only subjects as individual notions. And God, it’s true. There is an infinity of 1 / infinity, and a sole all encompasser (seul-comprenant tout), a single infinity / 1.
So what is this Baroque world? I told you the last time [about] Tintoretto’s paintings.[9] You have to occupy two floors. There are no longer two worlds. We have to think about that; there are no longer two worlds, there are two floors: a floor in which bodies fall, and a floor in which soul fly forth (s’élancent). That’s what the Baroque world is: A floor of pleats of matter that never cease to overflow, in which bodies lose their equilibrium, are caught up in masses, all that. And then, on the upper floor, there is the dance of souls, a thousand modes of communication between them.
Take a typically Baroque quite famous painting, El Greco’s The Burial of Count Orgaz, this famous painting by El Greco. Both floors are represented: below the burial and the participants at the burial, and above, on the upper part of the canvas, the extraordinary spontaneity of subjective forms, subjective forms called celestial, but are not so. Take Tintoretto, on one floor it falls, on another there’s a kind of incredible dance. It’s not even the movement, it’s the liveliest spontaneity, but are these really similar? Why are these two painters considered as two geniuses of the Baroque?[10]
So we are putting aside the session that we could have held on this because we have to make up time, but what we can gather is that the two floors are not a way of again baptizing the two worlds. It’s an extremely forceful way of placing in question the two worlds. On the upper floor, you will only find individual notions, individual subjects; on the lower floor you will only find matter in its pleats. These are not two worlds. What relations will there be between them? Beginning to emerge is Leibniz’s final very great concept: their relation will always be named harmony. Harmony. Why harmony? When we get there, to talk about harmony in Leibniz, because it’s one of his great concepts, we mustn’t forget what we discussed today.
My dream would be to find things as stupid (bête) as that; I realize with astonishment that, I think, they haven’t been completed, so [it’s] yet another reason for us to try to complete them, that no one has tried to create the list of senses of the word “harmony”, once we admit that, in Leibniz, they all intervene. Notably if you recall back to grade school (maybe beyond that), perhaps you recall that there is a harmonic mean (moyenne) of numbers that is not the same thing as the arithmetic mean. The arithmetic mean isn’t difficult, but the harmonic mean? We have to relocate our childhood suffering, because this isn’t just nothing. We have to re-understand what a harmonic mean is. And I close on this today, and why? Because a harmonic mean deals with numbers and their inverses, and because the harmonic mean passes through the relation of the number and its inverse, like 2 and 1/2 . It’s the consideration of inverses that defines the harmonic mean in contrast to the arithmetic mean. We have to reflect on this.
So, in the second trimester, when we get back in the new year, I hope nonetheless that we will begin to consider the relationship between Whitehead and Leibniz, and then very quickly we will be… [WebDeleze recording interruption, high-pitched sound, then return to the recording] … taken in its musical, arithmetic aspects, all of that. … Isabelle, Isabelle, please wait for me, if you have the time, wait for me so that we can talk, if you have a moment. [End of the session] [2:27:12]
Notes
[1] The four-week gap between the previous seminar (18 November) and this one is explained by historical events occurring throughout November and into December 1986: the proposal of university reforms by the Mitterand government led by Prime Minister Jacques Chirac (the so-called Devaquet Law), causing massive demonstrations from both high school and university students and thus interruption in classes. Hence, the gap explains the format for this seminar, the point-by-point recapitulation of the material covered in the first three meetings (28 October, 4 November, 18 November) corresponding roughly to chapters 1 & 2 of The Fold. Only in the latter part of the session, from the “Ninth Remark” onward, does Deleuze move forward with his development, hoping to wrap up the first part of the course.
The audio archives of the Bibiothèque Nationale de France and Paris 8, and the presumably definitive study of Deleuze’s seminars, Frédéric Astier’s “La Philosophie Orale de Gilles Deleuze et Son Rôle dans l’Élaboration de Son Oeuvre Écrite” (published Sils Maria Editions as Les Cours Enregistrés de Gilles Deleuze, 1978-1987 [2006]) show no record that this session occurred. Fortunately, the initial transcription was completed based on a recording by Richard Pinhas for WebDeleuze with one small segment, of about two minutes, omitted due to a cassette change. As I indicate in note 8, the recording publicly available on YouTube that is attributed to WebDeleuze contains two significant gaps that I’ve been able to complete ironically thanks to the transcript available at WebDeleuze.
[2] Deleuze seems to refer to the Tuesdays following the last full session when no recordings were made, but when apparently he held discussions with a limited number of students.
[3] This sentence, while included in the WebDeleuze transcript, is not audible on the recording.
[4] Cf. The Fold (University of Minnesota Press, 1993), ch. 2, pp. 14-15; Le Pli (Minuit, 1988), p. 21.
[5] This is possibly on p. 20 of The Fold.
[6] While the reference to a precise painting is unclear, see The Fold, p. 146, note 2, with its reference to Leo Steinberg’s book, Other Criteria (1984) and specifically to the segment of chapter 3 (also titled “Other Criteria”) with its subtitle “The Flatbed Plan of the Painting”, with examples from Rauschenberg’s work. The information grid to which Deleuze refers seems to correspond somewhat to Rauschenberg’s White Painting with Numbers, but the quasi-collage aspect is evident in Third Time Painting. In any case, what Steinberg describes is: “The pictures of the last fifteen to twenty years insist on a radically new orientation, in which the painted surface is no longer the analogue of a visual experience of nature but of operational processes” (p. 84), that Deleuze calls “an opaque grid of information on which the ciphered line is written” (The Fold, p. 27).
[7] This Greek etymology is subject to caution and to review.
[8] Despite the irony (and the perplexity presented by this), the recording attributed to WebDeleuze omits approximately eight paragraphs of material while the transcription of the same session furnished at WebDeleuze (clearly based on a different recording) contains the omitted text, which we furnish here in both the transcript and the translation.
[9] This may refer to one of the non-recorded, poorly attended meetings after the 18 November session during which Deleuze did not mention Tintoretto.
[10] On the linkage of El Greco’s painting to Tintoretto, cf. The Fold, p. 30; Le Pli, p. 41.
For archival purposes, an initial version of this translation was prepared in 2010 based on the available transcript at WebDeleuze, then reviewed for addition to this site in November 2018. Additional revisions to the French transcript and the English translation occurred in July 2019 based on access to the WebDeleuze recordings made at the Deleuze lectures by Hidenobu Suzuki. Review of the transcript and text occurred in November 2019, with additions and a revised description completed in October 2023 and updated in February-March 2024.
Also for archival purposes, let us make clear the discrepancy in dates between those presented here and those indicated at WebDeleuze: on one hand, the YouTube recording link’s date, 25 November 1986, is incorrect since Deleuze clearly situates the session as occurring on the final Tues during the semester before Christmas break (with classes not held on 23 December). On the other hand, a session dated 30 November 1986 at WebDeleuze, with the title “Leibniz (Foucault-Blanchot-Cinema)”, never occurred since the text and the recording are both a 87-minute fragment from the Foucault seminar session 6, 26 November 1985.