March 17, 1987

I tell you that it’s already from Leibniz that the great affirmation arises: everything is event! … Let’s start off from the simplest, any event at all. And it’s there that Whitehead awaits us. … Whitehead’s first problem was: but what are the conditions for the event’s emergence? You sense that it’s, in fact, a very special world; it’s a world of the perpetually new. Events never cease bursting forth, and always new events. The problem of philosophy will become the formation of the new.

Seminar Introduction

In his introductory remarks to this annual seminar (on 28 October 1986), Deleuze stated that he would have liked to devote this seminar to the theme “What is philosophy?”, but that he “[didn’t] dare take it on” since “it’s such a sacred subject”. However, the seminar that he was undertaking on Leibniz and the Baroque instead “is nearly an introduction to ‘What is philosophy?’” Thus, the 1986-87 seminar has this dual reading, all the more significant in that, unknown to those listening to Deleuze (and perhaps to Deleuze himself), this would be the final seminar of his teaching career.

Deleuze planned the seminar in two segments: under the title “Leibniz as Baroque Philosopher,” he presented the initial operating concepts on Leibniz, notably on the fold. Circumstances during fall 1986 limited this segment to four sessions with an unexpected final session in the first meeting of 1987 (6 January). For the second segment, Deleuze chose the global title “Principles and Freedom”, a segment consisting of fifteen sessions lasting to the final one on 2 June.

English Translation

Edited
Leibniz, Samuel Butler, and Contemplation

 

Having devoted the previous session to the Leibniz-Whitehead connection in the presence of Isabelle Stengers, Deleuze continues this “confrontation”, opening with Whitehead’s affirmation “everything is event” and immediately noting critical misconceptions about Leibniz as well as Whitehead. Deleuze proposes to discern what the conditions of the event’s emergence are, i.e., the genesis of the actual occasion, which he developed in the previous session in four moments. Deleuze defines the event for which he seeks an equivalent in Leibniz, notably starting from initial disorder with its objective and subjective characteristics, the former previously described as exercises of tossing printer letters into the air or scattering cannonballs onto the battlefield, thereby producing series. As for the subjective characteristics, Deleuze asserts that Leibniz introduced into philosophy an affective tonality. Deleuze describes Leibniz’s disorder or chaos as the aggregate of all possibles, hence his state of hallucinatory perception, at which point, the screen arises, passing between shadow (infinitely perforated matter) and light, extracting the dark depth of all colors, or in vibration, the uproar of the sea from which emerges a drop of water, i.e., initiating an aggregate of differential relations. Deleuze turns to Plato’s Timaeus for its screen story, and through this tale, Deleuze proposes the screen as a veritable machine, Leibniz’s machine of Nature, one going to infinity. Then, Deleuze draws from Leibniz’s texts to shift to the step following the screen action, a first kind of text discussing series that enter relations of whole-parts, and another kind of Leibniz text reveals a different type of series: whereas the previous text dealt with rational numbers, other texts present irrational numbers which place quantities into relation without any common measure, thus implying another type of series which are limits of a convergent series (e.g., the irrational number pi). Conjoined to the previous discussion of extensions is Deleuze’s proposal of a new philosophical word for the convergent series tending toward limits, the intensio, or “intensions”, with terms that are degrees and no longer parts, hence a theory of intensities corresponding to the preceding theory of extensities. Deleuze points out the idea of a certain conjunction of series at the level of the real, in matter, and that no reality has a sole characteristic, hence a conjunction such that Leibniz adds a third kind of series, of monads or possible existences defined by a convergent series, i.e., a portion of the world, which prolong themselves into another series, thereby forming a compossible world. Deleuze argues that through the sequence from chaos through the conjunction of two kinds of series, the event is constituted, requiring an understanding of its composition.

Returning then to the third infinity just described, Deleuze evokes Spinoza’s discussion of the third infinity which resembles Leibniz’s, and then he argues that the second and third types of infinity correspond to Whitehead’s second and third types which yield the event, i.e., vibration for Whitehead, inflection for Leibniz. Leibniz calls the event’s element the “monad”, a prehension of the world, with five aspects, and Deleuze refers to the neo-Platonic tradition in this regard, notably Plotinus’s third Ennead, where everything rejoices in itself by contemplating and thereby each thing fulfills itself, or in Leibniz’s terms, each thing is unconscious contemplation of its conditions of existence, i.e., of its requisites, e.g., the contemplative nature of the cow. For Deleuze, the aspect of auto-contemplation or self-enjoyment corresponds to Samuel Butler’s term “habitus”, and this “enjoyment”, says Deleuze, is living itself, a small confidence of endurance in contrast to the agony interrupting “self-enjoyment”. Deleuze proposes that each of the organs prehends other prehensions to infinity, i.e., “feeling” as the private form of prehension, the calm confidence that this continues, but not forever, the individual as a conglomerate of prehending subject, a nexus or prehensions all having some “self-enjoyment”.

Gilles Deleuze

Seminar on Leibniz and the Baroque – Principles and Freedom

Lecture 13, 17 March 1987: Principles and Freedom (8) — The Screen (le crible) and the Infinite

Initial Transcription by Web Deleuze; Augmented Transcription and Translation by Charles J. Stivale[1]

 

Part 1

[I must give you] a bit of news, your choice whether it’s happy or sad news: I won’t be in Paris next Tuesday morning, I can’t be here. So, our next meeting will only take place in two weeks [in principle, 31 March, although the next session is actually 7 April] as I noted down, right? Having said this, it’s not at all bothersome since we will finish later this year, so we won’t have completed everything, and when this is all completed, we will stop. So there we are.

With this done, you recall where we are because it’s not difficult to understand, but this requires very close attention. My task is to consider closely with you this author about whom I have had such sadness that he has all but disappeared from the ordinary philosophical horizon, this author, [Alfred North] Whitehead. [Here begins the Web Deleuze transcript] And what do we expect from this confrontation between Whitehead and Leibniz? Of course, Whitehead is a great philosopher who was influenced by Leibniz. But what we expect is not simply a comparison, and it’s to the extent that Whitehead is a great philosopher that necessarily he proposes for us insights on Leibniz that can be fundamentally useful for us. [Pause]

And we know at least the direction in which that can and will be useful for us. It’s like this kind of scream on which all of Whitehead’s philosophy rests, specifically: everything is event. “Everything is event” means what? That means that I am ready to reverse the so-called categorical schema subject/attribute. It’s the reversal of the subject/attribute schema of the kind: “the sky is blue”. You will tell me that he isn’t the first to have done this. Well no, precisely we can be pleased that he’s not the first to have done so. For what does it mean to us that he’s second? That Leibniz was perhaps the first. And I told you, misunderstandings occur from the start. When you undertook reading a great mode of thought or appreciating a great work of art, there are difficulties at the beginning, and then afterwards, all goes well. It’s at the beginning that misunderstandings await you like kinds of crabs that are quite ready to grab you, and the misunderstandings are never our fault. There is an entire tradition weighing upon us. It’s everything that we have been told and everything that we have been led to believe. It’s an entire system of judgment that one must get rid of so that one can have an immediate relation with a great work.

And I was telling you, what has been more disastrous in our understanding of Leibniz than the idea that the great thesis of Leibniz: “every predicate is in the subject,” that this idea is precisely in order (conforme), and moreover that it implies the schema “subject-is-attribute” (est attribut)? This [understanding] was taken as an indisputable given that the inclusion of the predicate in the subject, in Leibniz’s thought, meant and implied the reduction of all judgment to a judgment of attribution, and that if Leibniz told us, “the predicate is in the subject,” that meant propositions were of the “the sky is blue” type, that is, of the judgment of attribution type. And I told you that if one starts off from — how to express this — a “naïve” reading of Leibniz, one forgets all that, or one forgets everything we’ve been told. We realize the complete opposite, and it’s a nice surprise, realizing exactly the opposite. And I was quoting the text Discourse of Metaphysics where Leibniz says: the predicate or the event, the predicate or event. So what is in the subject, specifically the predicate, is not an attribute.

And furthermore, one understands nothing in Leibniz’s philosophy if one doesn’t see that, from one end to the other in this philosophy, he never ceases breaking the categorical schema subject/attribute, and that the categorical schema subject/attribute is, on the contrary, Descartes’s thing. And that if Leibniz is so anti-Cartesian, it’s because he refuses the idea that judgment is a judgment of attribution, and that this refusal that judgment is judgment of attribution. That’s what he means in telling us that the predicate is in the subject, and when he tells us that the predicate is in the subject, that hardly means at all that judgment is judgment of attribution; it means the opposite. We saw this from the start.

Hence I tell you that it’s already from Leibniz that the great affirmation arises: everything is event! Or rather, there is no object, there is no subject, we will see. The very forms of the object, the very forms of the subject result from the event as component of reality. The real is made of events. And the event is not an attribute, it’s a predicate, agreed; that is, the event is what is said. Predicate uniquely means: what is said. What is said is not the attribute, it’s the event. Everything is event.

Henceforth, as I was telling you, let’s start off from the simplest, any event at all. And it’s there that Whitehead awaits us. Let’s start off, once more, not from an attribution of the “the sky is blue” type, but from an event of the “a concert is being performed this evening” type. And the event is what Whitehead calls – to say something so innovative, you see the point to which philosophy, really, its sense is to elaborate extremely complex concepts for kinds of extremely simple givens (données) which are the givens of everyone. But precisely they would escape, they would never be manifested as givens if they were not exhibited by concepts. If you don’t construct relatively complicated concepts, how can we explain that the event is not simply something that happens, but is like the drop of reality, that it’s the ultimate given of the real?

Sense that it’s already a very curious way of seeing. If you tell yourself that, that the event is the ultimate given of the real, you are forced to see things differently. You tell yourself: so, at that moment, I was thinking it was the table, the given of the real, [Deleuze strikes the table very hard] the table that resists me, so be it. But the table itself is event, the Great Pyramid is event, Whitehead tells us. And in what sense? Not in the sense in which it was created at some particular moment, no. It is event in the sense that it is here and now. And what is the table event? It’s the passage of Nature in a particular limit of space. Nature passes in particular limits of space. It’s the table event. And the duration of the table over a minute, over the two hours of our seminar time, it’s an event. Nature passes through the table. Nature passes through the table. It’s not a thing, it’s an event. You will tell me: why say that? What does it matter, what does it matter why that’s said? It’s a question of knowing if what one says is beautiful, and if what one says is important. Why say this? Fine, we didn’t know it before; we cannot know it before. So, starting from this point, it’s therefore the actual occasion, everything is actual occasion. The event is the actual occasion. Once again, a concert is being performed this evening.

As we had seen, henceforth, Whitehead’s first problem – it’s here that I’d like to enumerate things – Whitehead’s first problem was: but what are the conditions for the event’s emergence?  You sense that it’s in fact a very special world; it’s a world of the perpetually new. Events never cease bursting forth, and always new events. The problem of philosophy will become the formation of the new (nouveauté). It’s very important; there are so many philosophies that presented themselves as philosophies of the determination of eternity. There you have one kind of philosophy, and when we have finally finished with all that, so on the 31 March, I would almost like to undertake a review of the topic of what we might draw from the question: “what is philosophy?” But, at that point, we will no longer speak of Whitehead or Leibniz, or if so, briefly, but in contrast, we will think about them greatly, as a function of such questions.

But so I am saying, for the moment, for the moment since we are not yet there, we have to mark [this] out well; just see the problem: what are the conditions for the emergence of an event? It’s a kind of genesis of the actual occasion. And that was our object the last time; we distinguished four steps. This is the first problem: the genesis of the actual occasion.[2] The second problem – you are waiting for it; I want this to be extremely clear in your mind – the second problem is: what is an actual occasion or an event composed of? Thus you will not confuse the conditions of the actual occasion with the composition of the actual occasion. Once I know the conditions under which an event or an actual occasion is produced, I will still have yet to consider fully what an event or an actual occasion is composed of. And I tell you, among Whitehead’s great books, on the conditions of the actual occasion, it’s not so much in his great book, Process and Reality, that he speaks of the conditions of the actual occasion; it’s in this very beautiful book, The Concept of Nature.

And in this genesis of the actual occasion, we have seen that [Whitehead] distinguishes four moments. He starts off from chaos, from chaos-cosmos, a cosmos in the state of chaos, which he presents as pure disjunctive diversity. It’s just anything at all, it’s the membrae disjonctae. [Pause] Second instance, something that functions as screen and that he prefers to call Ether. [Pause] But you see that if I say Ether, it’s a word rather devoid of sense; if I say Ether in relation to the screen, that specifies it singularly. He will say as well an electro-magnetic field. And he also says: it’s what Plato talks to us about in the Timaeus, and it’s known by the Platonist word of Chôra, [Deleuze spells it out] the Chôra, presented by Plato as a screen.[3] This is the second instance.

The third instance is: from the action of the screen on the disjunctive diversity will emerge infinite series. The organization of chaos into infinite series, these infinite series enter into rapports of whole and parts. It’s vibration. How is it that vibration enters into rapports of whole and parts? The answer: — Let’s settle for some very, very simple things. Whitehead goes much farther as mathematician and as physicist, but we will settle for the simplest — insofar as vibration is inseparable from harmonics, and harmonics are sub-multiples. The frequency of the vibration is inseparable from harmonics, so that we will speak of sound harmonics as well as of color harmonics. As soon as there are vibrations, there are harmonics, that is, in infinite series. So we will say that the screen exerts itself over the disjunctive diversity, two exerts itself over one, to derive from this three, that is, infinite series that are not the final term. I assume that there is no final harmonics, neither in color nor in sound, so no final term and no limit. A fundamental thing: these series have no limit; they do not tend towards a limit. [Pause]

Fourth term or instance: that does not prevent vibrations from having internal characteristics. For example, a vibration that will yield sound, taking into account our organism, is not the same type as will yield color. Everything is vibration; vibrations have internal characteristics. We have seen this; we can say, for example, that vibrations destined to be sonorous – I say precisely “destined to be sonorous” since I do not yet have the means to engender sensible qualities – vibrations destined to be sonorous have internal characteristics that will be, for example, – I am speaking randomly here (je dis n’importe quoi) – duration, height, intensity, timbre. You see that it’s very different from harmonics; it’s another stage. It’s the internal characteristics of the vibration, the characteristics of vibration. Another vibration, for example one destined to yield colors, will have internal characteristics what will be saturation, tint, value, range, (étendu),[4] the range of color.

I am saying: vibrations even are in relation with harmonics, that is, enter into rapports of whole and parts, but their internal characteristics form series, or rather the measure … – You will tell me that all this is going too fast because one would have to introduce a justification of measure. Why are the internal characteristics of vibration essentially, in their essence, subject to a measure? A genesis of measure is required. Fine, a genesis of measure is required! I will pass on that, since one can’t do everything. On the other hand, to my knowledge, Whitehead doesn’t do it, but we could do so. I feel almost capable of preparing the genesis of measure in this perspective. No matter, you will trust me.

I am saying that the measure of internal characteristics forms series that are not of the same type as the preceding ones. These are convergent series that tend toward a limit. I no longer find myself in front of infinite series the terms of which enter into rapports of whole and parts to infinity, without final term and without limit. I find myself facing a new type of series, specifically, the measure of internal characteristics of vibrations, forming convergent series that tend toward limits. [Pause] From that point onward, everything goes well for Whitehead: you have only to assume a conjunction of several convergent series, each one tending toward limits. You have a conjunction, the conjunction of at least two series, of two convergent series tending toward limits, defining the actual occasion. You simply have added the idea of conjunction of convergent series to that of convergence to obtain [it], and you have at least a definition of the event.

What is an event? Let’s try to climb back along our linkage. What is an event? It’s a very beautiful scientific-philosophical definition. I mean, there, at this level, there is no difference to be made between science and philosophy. I would say that an event is a conjunction of convergent series each tending toward a limit, [Pause] and each of which characterizing a vibration, that is, an infinite series entering into rapports of whole and parts. If I continue climbing back: under the influence of anything at all acting as a screen, in relation to an initial disjunctive diversity. I have an excellent definition of the event; I ask for nothing more. If I am told: what is an event?, that’s what I answer. And if I am told that it means nothing, I answer: ok, acknowledged, bye bye (au revoir). There is nothing to try to justify. There you are.

So, I say this quickly so you might follow me well because I am going to jump from one thing to another. First point – you see immediately what I want; this isn’t about searching in a scholarly manner whether there is an equivalent in Leibniz. I want to start off from a brutal question: Is this schema like a beacon that causes something to be brought to light which is essential in Leibniz, but that the thickness of tradition had hidden from us, as if Whitehead, through his own conception of the event, had scraped away all sorts of useless levels that Leibniz had covered over? And my answer the last time was already yes. And I told you, let’s re-read Leibniz. Let’s re-read Leibniz and be sensitive to this: to what an extent, I don’t say everywhere and always, to what an extent in a certain number of texts he perpetually returns to a theme, the theme of the initial disorder. And this is good for us because, generally, one immediately says there is an order in Leibniz, and then we only reach these texts on the initial disorder too late. And immediately, Whitehead makes us want to start from there — in all of these texts by Leibniz, and especially as he gives some very concrete characteristics to these states of initial disorder.

I was telling you that he gives to them two sorts of characteristics, objective characteristics and subjective characteristics. You can grasp the initial disorder objectively and subjectively. You can do it yourself. Once again, you toss a handful of printer letters into the air. There you have a text by Leibniz that alludes to that. Or you have cannonballs on a battlefield, cannonballs lying around there, a thousand, ten thousand scattered cannonballs on a battlefield. This isn’t complicated, the initial disorder. Perhaps some among you remember a beautiful text, one of the most beautiful texts by [T.E.] Lawrence, not the novelist, but Lawrence of Arabia. [In] one of the most beautiful texts, it’s the evening of a battle; he is in the desert dressed as an Arab, an evening before a battle against the Turks. And then there are cadavers, all the cadavers, on the battlefield, and night falls, and he finds these cadavers to be strangely disordered. He is looking around at random, cadaver after cadaver, and there is one spot where there are four cadavers, a spot where there’s just one, and then nothing. And here you have this strange man who begins to pile up these cadavers, making regular piles of them. It’s a rather obscure text, [where] one feels the dark soul of Lawrence of Arabia. One even senses inexpressible doubts, but the fact is that he begins to arrange the cadavers on the battlefield, as the other [writer] invites us to arrange the cannonballs on the battlefield.

Fine, you understand, it’s truly the passage from one stage to the other, from the initial disorder to something else. Arranging cannonballs, what would that mean? It would mean that they are no longer to be counted one by one, Leibniz tells us; that is, you have to make a series. There is only one way of exiting from chaos, it’s by making series. Series is the first word after chaos, the first babbling [balbutiement]. Gombrowicz wrote a very interesting novel, titled Cosmos [1966], in which he launches forth as novelist in the same attempt. Cosmos is pure disorder, it’s chaos, and how to emerge from chaos? … Yes?

A student: [Inaudible comment]

Deleuze : To discover what?

The student: [Inaudible comment]

Deleuze: Yes? This is what film?

The student: [Inaudible reply; Deleuze listens closely]

Deleuze: Yes, so, that would go in the same direction. So look at Gombrowicz’s novel. It’s beautiful, how series are organized starting from chaos, especially these are unusual series, two unusual series that are organized: a series of hung animals, hung sparrows, hung chickens. It’s a series of hangings. And then there are series of mouths, a mouth series, a series of chickens, how they interfere with each other, how little by little they go on to trace an order in the chaos. It’s an odd novel, but in the end, we wouldn’t have finished if we threw ourselves into all this. But, I’m saying that, in Leibniz, you have all these themes: to introduce an ordering within the initial disorder. And you understand that if he is already so interested in the calculation of chances, in the calculation of probabilities, this can only be within the perspective of this problem.

But the subjective states, that is, the subjective equivalent of the problem, are no less interesting. I was telling you that Leibniz is the author who introduced, if you will, into philosophy something like a fundamental affective tonality. All of philosophy has its fundamental affective tonalities. I was saying, look at Descartes: this is a man of suspicion, such a man of suspicion. That’s his affective tonality, suspicion. So that permits everything; in fact, it permits all the stupidest interpretations, but I believe rather that one must rather extract the affective tonality, then, instead of undertaking the psychoanalysis of an affective tonality which strictly devoid of any interest. Rather one must see what it [the tonality] becomes when it is placed back into the aggregate of philosophical concepts.

So, suspicion in Descartes becomes doubt. That becomes doubt; that becomes an entire method of certainty: how to arrive at conditions under which I am sure that I am not being wronged. That’s Descartes’s problem: I am being wronged (on me trompe). These are screams (des cris). When I tell you that you cannot understand philosophy if you don’t insert therein the necessary screams (les cris qu’il faut), philosophers are people who scream, but simply they scream with concepts. I am being wronged, I am being wronged – that’s Descartes’s very own thing! I am not going to tell him he’s wrong: no, you’re not being wronged. First, he’d have nothing left to say, if I told him that. You understand, that’s why, once again, I do not cease telling you that philosophy has nothing to do with arguments. Imagine that, if we began by telling Descartes [this], can you imagine? [Here begins a 33-minute interruption of the WebDeleuze transcript and recording]

In the end, nobody resents you, Descartes. He’s the one who says that even an evil genie, even God wrongs him. That’s very interesting. One might say that this is a madman’s idea. It would be a madman’s idea if there weren’t a philosophical system. What is the difference between madness and philosophy? It’s on the level of this kind of problem that one must pose the question, and not on the level of psychoanalyzing the philosopher. Rather it’s: what relation is there between Descartes’s “I am being wronged” and the paranoid guy sitting on the corner saying “I am being wronged”? So there you have the problem of the philosophy-madness rapport.

And well, I was telling you that this is Leibniz. His affective tonality is not “I am being wronged” because he just doesn’t care about that. Of course, he is wronged, and so then? So what! That’s why, so then, he has his screen. But of course, he is wronged, but we will see. If there weren’t a screen to distinguish true and false – no, not in order to distinguish true and false – for what is awful, for Leibniz, it’s not that he might be wronged. What’s awful is that Leibniz’s mind is not his own (pas sa tête à lui-même). He does not have his own mind. It’s not his mind. And this too is a serious illness. [Laughter] It’s not his mind. One has to imagine him living in a kind of dizziness (étourdissement). He has neither his own mind, nor his own ears. [Pause] All that buzzes in his head; it whistles in his ears. [Pause] However, he seems to be in good health, but you know, you must not trust this, right? [Pause] That is, his fundamental state is dizziness that he will tell us is nothing other than death; it is death. Death is only generalized dizziness. Death is not what comes after the dizziness; it’s a dizziness that one does not feel. [Pause] When I say my ears whistle, yes, there’s an entire uproar. My head is filled with noises, with parasites. And I was telling you, so that in such a mode of living, how do you imagine that achieving a truth, even reaching an idea or shadow of an idea wouldn’t be a cause to celebrate? I am completely stupefied.

And Leibniz’s splendid, splendid analysis, the most concrete analyses from the viewpoint of affective tonality, are those on the states of dizziness [Pause] that are like states in which I can no longer distinguish perception and the hallucination of states of hallucinatory perception. About all this, perhaps some of you might tend to say, oh well, all that is very old philosophy because we’ve known for a very long time thanks to phenomenology not to confuse hallucination and perception, no more than imagination and perception. So hallucinatory perception refers to an indeed aged philosophy.

Here is where I’d like to open a very short parenthesis. Do not believe that nothing is ever gained (acquis), and if I speak of hallucinatory perception, this is as a function of what I mentioned, that on Tuesday the 31st [March] – since there won’t be a session on the 24th, I remind you; I am saying this again because I am certain that there are some among you that haven’t yet noticed this – well, when we will be trying to draw some conclusions about “what is philosophy,” I believe that we will see the extent to which all these questions – is there a difference of nature between perception and imagination such that speaking of hallucinatory perception has no sense? – well, we will see that all these problems must be readdressed and above all still imply certain conceptions of philosophy such that they are not posed in the same way according to one conception or another. Once again, it’s not that philosophers were saying anything different thing, but rather that everything depends on the kind of problem that you set out.

I mean something quite simple: it’s that if phenomenology can distinguish perception and imagination in such a way that hallucinatory perception might be a notion that has lost all sense, this is because, to employ their own formulation, they [phenomenologist] provide themselves, to use their own expression, with wild experience (expérience sauvage), what Merleau-Ponty called, for example, wild experience, a particularly reasonable and already organized idea. But, in fact, if one wonders about what a wild experience is, it’s obvious that this must be – well, it’s [not] obvious… — it’s possible that this is an experience prior to the screen, whereas phenomenology has never been able to do without the screen. It always situated itself with something already screened. But before the screen, how could you distinguish between perception and imagination? Before the screen, there is only hallucinatory perception. There are only states of being anesthetized (états d’endormissement), of half-dreams, of stupefaction, of vertigo.

And I was saying, so in Leibniz, if we want a perfect state, according to our previous analyses, we have this perfect state; I’d say that Leibniz’s disorder or chaos is the aggregate of all possibles. This would be a very Leibnizian definition of chaos. It’s the aggregate of all possibles. Why would this be a very Leibnizian definition of chaos? Perhaps you recall why? It’s quite simple. You recall that all possibles are possible, but are not compossible with one another; that is, we have to choose between the compossible aggregates. If I think of the aggregate of all possibles, this is pure chaos. If I think of the aggregate of all possibles independently of the relations of compossibility in which they are distributed, according to which they are distributed, I have pure chaos. I can say that in Leibniz, chaos is the aggregate of all possibles. It matters little in the end. It’s this state of hallucinatory perception.

Fine, and I was saying, at this point a screen arises, [Pause] here’s where a screen arises. So, you see, in this light, I can say that this corresponds entirely with Whitehead. It’s the second moment. We are passing into the second moment. And fine, the screen, what is this for Leibniz? We must not be shocked to find, for example, in a text from his youth, “Theory of concrete movement”, we find the same word that Whitehead will use: it’s ether. [Pause] In fact, it’s an old word, an old word. He cannot speak about an electromagnetic field; science in Leibniz’s era does not include this idea of electromagnetism, but what does he speak about? We have seen this. We can think of some relative screens in order to get an idea, which wouldn’t be the true, ultimate screen, once again. But to get this idea, it’s an approximation. We can only approach the ultimate screen, of pure ether, that there exerts its screening action in relation to a pure chaos. We can only have approximations. We are already so greatly in an organized and pre-organized world.

And as we have seen, we saw at least two cases. We had seen a screen on the level of light, and I told you, well yes, you can compare the action of light to a screen. And the screen passes between what and what? Between pure disorder, which is what? The shadows, that is, an infinitely perforated (trouée) matter, a matter perforated with caverns, these caverns themselves referring to caverns, matter perforated with caverns to infinity, that is, that no longer reflects nor refracts light. The shadows are precisely what neither reflects nor refracts light. Well, the shadows are defined by this world of caverns, of caverns within caverns to infinity.

And there’s a screen, and from the shadows defined as such, the screen is going to extract what? We have seen it in the conception of light. As much in discerning from so-called Baroque painting as from Leibniz’s text, what the luminous screen is going to detach, to discern, to extract from the shadows is what is called the dark depth of all colors. And notice that there is a very small difference between the shadows and the dark depth of colors, and nonetheless something essential is at play in this small difference. From the dark depth of colors, colors effectively will emerge, that is, events of refraction, according to Leibniz, elements of refraction of the light ray. [Pause] This small difference will have been necessary between the shadows, that is, the niger, and the dark depth of colors, that is, the fuscum subnigrum, the blackish depth. [Pause] So, were we correct in finding that [depth] in at least an entire current of so-called Baroque painting, that is, in works by Tintoretto and Caravaggio?[5] You were free to see it in this way yourselves. But we were seeing there the example of the screen.

The other example was an example of sound. I insist on pursuing my two examples: the sound vibration and the visual vibration. And we were saying, well yes, disorder, chaos, what is that? Sound chaos is this kind of uproar of the sea, the equivalent of the dizziness that Leibniz constantly evokes. I am near the sea or I am near a water-mill. He needs a mill; a river isn’t enough. He needs a mill in the river, necessarily, to create some noise, right? The mill’s wheel, a mill wheel is necessary. I am near the water-mill; I am near the sea, seated by the sea. And we no longer know. We’d have to enter into the situation of someone who hears the sea for the first time, this infinite uproar, this incredible uproar, this incredible uproar that expresses the chaos of drops of water each in relation to the others. [Pause] Fine, you see, it’s the equivalent of the shadows, the noise arising from the depth of the sea.

And then, if I imagine a screen of sound, what is that going to yield? Here I am anticipating what is remaining, on what we haven’t yet started at all, but a kind of geometry of perception, with the condition of taking it as an infinitesimal geometry, notably, to initiation – what’s going to be initiated doesn’t matter because we don’t at all understand; what I am saying here for the moment, it’s like a coming attractions announcement – fine, a whole aggregate of differential relations will be initiated, a reference to infinitesimal calculus, an aggregate of differential relations … [Interruption in the recording] [46:43]

 

Part 2

… perception, [Pause] integration in a perception of the noise of the sea, of this uproar. This will be produced… Yes?

A student: [Inaudible, regarding Maurice Blanchot and his novel, Thomas the Obscure]

Deleuze: To Thomas the Obscure? We’d have to see.

The student: [Inaudible remarks]

Deleuze: Yes, yes, yes, yes. We’d have to see. I am reacting; I don’t have sufficiently in mind if there’s something equivalent to dizziness, the primary dizziness. I am going to tell you, Blanchot is still something else, eh? His own affective tonality is not dizziness; it’s something he never hid, fatigue, [Laughter] fatigue, but fatigue is teeming, extremely teeming. There are relations between dizziness and fatigue. Yes, just as I suggested to you in relation to Gombrowicz, we’d have to create the relation with Thomas the Obscure… Yes?

Richard Pinhas: In the physics, in the physiology of sound, the noise of the sea is what is called “white noise” that is the purely undifferentiated, notably the same intensity for all harmonies…

Deleuze: That’s it! (In commenting, he blocks out what Pinhas says)

Pinhas: … exactly the same. From the moment in which an undifferentiated gets filtered, we effectively have a bodily relation of perception through this undifferentiated.

Deleuze: So that connects basically, that is, the equivalent in the domain of sound to cases in the visual [domain], this white noise… Repeat that slowly, your definition of white noise.

Pinhas: The definition of white noise, it’s a noise that has exactly the same dynamic, that is, which is calculated in decibels, that has exactly the same dynamic in all the octaves, in all the frequencies, and in all harmonies, that is, the purely undifferentiated. If we take a very simple curve, like so, [He writes on the board] with potentials (puissances) in decibels, in dynamics, here the values of fundamental harmonies, finally, all the frequencies that one would like, we will have absolutely the same script everywhere. Whereas a sound is defined by a curve of whatever sort, or by such a curve, here we have a purely undifferentiated, thus something that will be like a kind of cosmic continuum. And a cutting action, a filtering action will be necessary that will be the equivalent of this sieve, what we find in the Chôra, in order to have a relation of differentiation between what we call perception, perception of what is perceived, and the now different, differentiated sound. So long as there’s no cutting in the undifferentiated, in this white noise, so long as there’s no filtering in this white noise, there will be this undifferentiated that is totally the same.

Deleuze: I want to say that there’s something stupid that bothers me. Why do they call it “white”?

Pinhas: It’s a definition… There are several types of noise. There’s pink noise, white noise…

A student: And the blue note? [Laughter]

Pinhas: No, no, no, no, that has nothing to do with this.

Deleuze: But why don’t they call it “black noise”?

Another student: This is an absence of colors!

Deleuze: Yes, it’s an absence of colors, but what bothers me in this is that it creates an imbalance of the sound-color parallelism. I mean that passing to white light, on the contrary, that [light] is on the side of what is going to cause the filter to act; it’s completely on the other side. So, obviously, they didn’t know. – [Deleuze speaks directly either to Pinhas or to another student near him] You know what you’re going to do? You note down for me, you take a piece of paper and you note down the definition immediately because I’ll lose it and that will go to shit, [Laughter] so you note it down right away. You’re good to do that? Do you have a pencil? Do you have what you need? Do you have something to write on? Fine. —

So, there we are, I’d say, about this screen story, let’s get back to it. There’s a common source in Whitehead, in Leibniz, and I was telling you [at the 10 March session] that this is Plato’s great text, the Timaeus. So, I wanted to comment on it at length, and then I told myself, that’s going to get very complicated because it’s going to add to this a third side. I don’t want you to make a… This is an extraordinary text, then, the Timaeus, because I indeed believe, first, that it’s a unique text by Plato, on a fundamental notion. There’s only one text… And I am telling you about this because the text is so beautiful, yet so difficult.

In Plato’s writings, we are used to Plato distinguishing two things: models, eternal models, otherwise known as Ideas; and then, Becoming, or the what-is-becoming (le ce qui devient) — it’s not the same thing, Becoming, or the what-is-becoming, but finally, let’s keep them together – and the Becoming, or the what-is-becoming endures the imprint of the models. You see? [Pause] So fine. Obviously, that’s too simple. But, first point, here’s what is in this text. [Deleuze refers to elements of the Timaeus, notably to sections 51e to 53c indicated as the assignment at the 10 March session] Plato tells us there’s a third thing, and moreover, we have to expect that this third thing reacts onto the two others, that is, that this is more than we might have believed. It’s not simply a third thing that gets added on. How do you expect to add on a third thing without revising everything? And this third thing, he speaks – here’s the admirable text – as if he were talking about things linked to mysteries. It’s since Nietzsche that we know that the Greeks admired mysteries. These [things] are linked to great mysteries. – Already? [Pause; Deleuze seems to have read or heard something that surprises him] Ah, ok… Ten, it’s a minimum, right? … Fine…

What is this [mystery]? I am saying that I want to talk to you about a thing that one hardly speaks of. [Deleuze speaks here in the voice of Plato] Why? Because we only see it in a … We can even see it, but is this really seeing? – So this is some great Plato, this text, from a literary perspective, is sublime, splendid – Can we really speak about it? Or do we draw conclusions about it based on reason? It’s like through a veil. [Pause] It’s like being in a kind of dream, a kind of dream. [See the Timaeus, 52b] And it’s in this kind of dream that the thing tells me, what does this thing tell me, the screen? “An entire site…” (Tout un lieu…) That’s it: I perceive a something in a kind of dream. You’ll tell me, as a way of speaking about a screen, this is odd. Well yes, that’s because the screen is strange. The more the text continues, the more we notice that, in fact, this screen is frightening, that it consists exactly of a living membrane, as if the whole world depended on a living membrane, a monstrous [Greek word from the Timaeus],[6] which is animated by… So, on what is this screen, this screen telling you “An entire site”? We have to understand why we only perceive it in a dream. This is because there was no site (lieu) before. It’s the screen that assigns sites. So, everything is a site; I can only speak this announcement in a kind of dream, in a dizzying revelation.

How does this screen function? The more the text advances, the more we learn this: it receives jolts from what comes to fill it. What comes to fill it? We don’t know yet, but the fact is that what comes to fill it, or comes to touch it, this membrane, is going to give it jolts.[7] Fine. What comes to fill it? Tiny geometric figures; these are tiny geometric figures, triangles, pointy triangles, some isosceles triangles, some equilateral triangles.[8] And how does it react? I should explain that these triangles [Deleuze pauses, saying something to himself, barely audible] are, in fact, component elements of the great qualities or the great elements, fire, air, earth, and water. Fire, air, earth and water are made of tiny triangles of different natures, each of the elements. So, they tend, we assume that these elements exist prior to the screen, but they are in a state of disjunctive diversity. They form a kind of chaos. Already, you see, I can say [that] these figures, these triangles are not the Ideas themselves, the Ideas with a capital I. The eternal models are never in a state of chaos.

So what are these triangles, these little triangles, in relation to…? Ah, this gets enormously complicated since Plato tells us, in a passage close to the one I am citing, that the triangles are already images. They are little images, little images, so Ideas, eternal models. But how can images, Ideas, eternal models be in a state of chaos? This is truly complicated. So fine, let’s assume that all these little figures are cases of chaotic distribution like, I was saying, I toss a fistful of printer’s letters into the air. Here, I toss little figures into the air. They fall down onto my screen, this living membrane – awful, it’s, it’s awful! It’s a beast! One must imagine this screen as a beast in fact. So, fine.

Under the tops of these pointed triangles, the membrane reacts. It never seizes a figure; it never seizes a figure. The screen has no figure, but it reacts to the figure points that it receives, as if it secreted a kind of acid. And by reacting to the figures it receives, it reacts onto the figures. And what is the direction of its reactions on the figures? It separates them. In Plato’s writing, I’d say that it forms separate series, [Pause] or says Plato, under the action of the screen, the similar reconnects with the similar, specifically triangles of one sort are going to reconnect with triangles of the same sort or, if you prefer, air is going to reconnect with air, fire is going to reconnect with fire, water is going to reconnect with water, earth is going to reconnect with earth. Earth is a very special case, in fact, but I am not going into its details, I don’t have the time, but for earth, there are complications, fortunately, that Plato created and that he really needs. In other words, by separating and organizing series of figures, the screen assigns a site to each element. Fire will be above the world, earth will be down below, air will be between the two, water on the earth, etc. Each element will have a site. The screen assigns the site by forming series of similar things. You see?

I’d say, fine, to compare… It’s interesting over the centuries, and I don’t mean that Whitehead was doing some Plato, and comparing the echoes of one great philosopher with another, Whitehead told us: the screen’s action consists of this, organizing series of which the members enter into relations of whole and parts. Plato told us: organizing definite series through attraction of the similar, that is, the series constituted by homogeneous or similar terms. And even, for Plato, that will not suffice, this action of the screen, but here, it will no longer be the screen that acts. Moreover, the screen, you see, will arrive in the end at a kind of death, a becoming death. Each element is sent back into its site, the similar attracts the similar, the similar series are constituted. In other words, it’s the regime [where] the screen has separated the things such that a new operation, a second operation will be required, just as in Whitehead, a second operation is necessary. Simply, the great difference at this level is that the second operation is not longer the screen that’s responsible, in Plato. It’s God, that which, no doubt, was already managing the screen, but who, for the second operation, will not longer employ the screen. And this second operation consists of guaranteeing the transformation of elements into one another, that is, of going beyond the separation. You see?

But then, a follow-up to the first operation of the screen is required. I don’t mean that this is the same thing. We saw in Whitehead that it’s very different because starting from the screen, you have two operations, the series entering into relations of parts-whole, specifically vibrations, and starting from there, the convergent series that tend toward a limit [Return to the Web Deleuze transcript] and that concern the vibrations’ characteristics, or rather, that concern measuring the vibrations’ characteristics. There we are. So, I refer you to… I wanted to comment on this at greater length, but I tell myself that we’ll get lost in all this, so there’s no point.

In any case, I say, imagine the screen as a veritable machine, in the sense that Leibniz told us: it’s the machine of Nature. In the sense that Leibniz told us: Nature is the entire machine, but simply it’s a type of machine about which we have no idea, we, humans, who create only artificial machines, since the true machine, that of Nature, it’s truly Nature that is machine; we don’t know how to create machines. The real machine is the one in which all its parts are machines, that is: the infinite machine. Whereas we, in our machines, very rapidly, after a certain number of operations, we have to collide with this: it’s a length of iron. We collide; our machines, they have parts that are not machines to infinity, you see, whereas machines of Nature are machines to infinity. The screen is the type of a machine to infinity.

Having considered this, I am in good shape, in a certain way, to state what happens in Leibniz after the screening (le criblage), [Pause] but that’s thanks to Whitehead, I believe, since in Leibniz, I find two levels that are going to correspond to two series in Whitehead. Is this true, or am I forcing the texts? Here, it’s a test [épreuve]. One has to stop when [one forces]; one can force a little bit, but one has no right to force a lot. How will I say [it]? It’s a question of good taste (bon goût) in philosophy. The existence of good taste in philosophy is very simple: we cannot make just anyone say just anything. And I believe that it’s the same thing as good taste for interpretation, quite simply. Any interpretation is a matter of good taste. If you do not exercise good taste, you will fall into abominable vulgarities, and worse, these will be vulgarities of thought. So you can very well tell me: no, you are exceeding good taste, but you can just as well tell me: you are maintaining the limits of good taste. I am persuaded that I maintain the limits of good taste, that is, of the strictest truth when I say: look at Leibniz’s texts. Obviously, they are scattered, but tough. [Laughter]

I notice a first kind of text, texts in which Leibniz speaks to us explicitly of infinite series that are characterized by this, that they enter, or that their terms enter into rapports of the whole and parts. [Pause] There are a lot of Leibniz’s texts on this whole-parts rapport, and on the variations of this rapport. These series that enter into rapports of whole-parts, we call them extensions, in conformity with Leibniz. These will be extensions. Does that mean the extension (l’étendue)? Yes and no. The extension (ending in e), that is, what Leibniz translates as l’extensio, but extension has two senses: the extension is at once the extension or expanse with an e, an extension (étendue), and also it’s the genre to which the extent belongs, specifically everything that comes back into rapports of whole and parts. But you will tell me: but what else is there than the extent [ending in] e? Now I’ll say in order to… It’s important for what’s coming (l’avenir), you’ll see.

What else is there than the extension [ending in e], for returning into rapports of whole and parts? Anything that you want: number, time, lots of things. We would find others if we looked. In any case, number, time, these are examples that Leibniz offers the best. It’s the family of extensions. I would say that these are infinite series, and much more, let us add to this, matter, under which form? Matter, not under just any form, matter insofar as [it’s] divisible to infinity. There is no smallest part of matter, there is no greatest whole of matter. There will always be a greater whole, there will always be a smaller part. Everything that enters to infinity into rapports of whole and parts, that constitutes an infinite series with neither final term nor limit. [Pause]

I am saying that any number whatsoever… No! I am saying that any rational number can be expressed in such a series. [Pause] It’s the regime of… The extensio is all corresponding to the rule (I’m speaking Latin, it’s not my fault) partes extra partes, that is, the exteriority of the parts, the parts each exterior in relation to the others, to infinity. If you take a tiny bit of matter, however small, you can still divide it, partes extra partes. There you are. You will find a lot of that in Leibniz, and analyses of the whole-parts rapport. Moreover, he attaches so much importance to this that he considers that basic propositions on the whole-parts rapport are axioms, but that these axioms, furthermore, are demonstrable. It doesn’t matter; you see, [if] we had the time… A course is always infinite; we could devote an entire session to this problem of extensions. But as we have a different purpose, we pass this by, and are passing along quickly. But we have located this type of series that, in my opinion, is an absolutely consistent region by having its unity.

And then, in other texts, or in neighboring texts, you see a very different type of series in Leibniz. And what creates my difficulty is that, obviously, he can’t do everything, no one can do everything. So, he didn’t create the theory of difference between these two types of series; he had so many other things to do. – [Noise is heard from the doorway] Could the door not squeak?… We need to bring a bolt… Fine, here we are. So, … [Pause] — The other type of series is what? I organize the texts in groups. First sort of text: Leibniz tells us that irrational numbers are something different from rational numbers. You recall that rational numbers are the aggregate of negative wholes and fractions; irrational numbers are numbers that express a relation between two incommensurable magnitudes (grandeurs).

A fraction – I always have a concern: a misunderstanding that you must avoid is thinking that a fraction irreducible into a whole number is the same thing as an irrational number. You recall, it’s not at all the same. If you say two sevenths, two over seven, this is a fraction irreducible into whole numbers. So it’s an infinite series, but an extensive infinite series, of the type that we were just discussing. Why? It’s because two sevenths doesn’t prevent you from having two sides, numerator and denominator, with a common magnitude: two quantities of this magnitude in the numerator, and seven quantities of this magnitude in the denominator. A fraction, even irreducible, places into relation perfectly commensurable quantities, since you have two x of this quantity in the numerator, seven x of this quantity in the denominator. An irrational number, on the other hand, places into relation quantities that have no common measure, that is, that you cannot express in the form of a fraction, since the fraction form implies common measure. Thus I assume that this is well understood.

And so there you have a first sort of text: irrational numbers imply another type of series, which is what? They are themselves limits of a convergent series. [Pause] It must be found, simply. Pi is an irrational number; the famous number pi is an irrational number. It’s a contest, in Leibniz’s era; I believe that Leibniz is the first to have found the series into which one could place pi. At the outside, what series is it? Leibniz will find it in the form of pi over 4, which is the limit of an infinite convergent series. One has to wait quite a long time, that is, I think well into the eighteenth century, for this to be demonstrated. – That was an odd… Leibniz doesn’t provide a demonstration for it; he gives the formula without demonstration. Did he have it? That I don’t know; in any case, one must wait for the eighteenth century. That happens often. They move fast, mathematicians; that’s what’s so great. In their rough drafts, one mustn’t think that they proceed like in a book; in their drafts, they sometimes produce flashes after which one has to wonder for twenty years how they got there, how they found that. We have to await a mathematician named [Johann] Lambert within the eighteenth century for the demonstration of pi over 4 as the limit of an infinite convergent series, and that it’s indeed an infinite convergent series. Anyway, there you have it; that’s the first case.

Second case: we have things that are internal characteristics. These internal characteristics are their requisites, an essential Leibnizian term: these are their requisites. These requisites return into convergent series that tend toward limits. [Pause] These convergent series tend toward limits – that, I believe, is fundamental, all that is so fine, so satisfying… This is what Leibniz… You can invent the word. – Anyway, I’m looking for a word; let’s do an exercise of terminology. You see, in philosophy, when terminology emerges, I have just baptized my first series: infinite series that have no final term and that have no limit; they enter into whole-parts rapport. Henceforth it’s extremely well founded to call them extensions; this will be a little strange since at that moment, I would be forced to say: hold on, extension in the ordinary sense of the word is only a particular case of extensions. And then I fall upon a new type of series: convergent series tending toward limits. Suddenly I tell myself: I have no choice, I need a word. I need a word out of commodity, not just to be clever; it’s out of commodity since I have baptized my first series, and otherwise no one will be able to understand anything. Hence the terminological act in philosophy is the true poetry of philosophy. It’s absolutely necessary.

So I have the choice: either a currently existing word that I will use. At that moment, I seize it from current language and I devote it, I devote it to a particular sense, exactly as a musician can seize a noise, or like a painter can seize a nuance or a shade and, at the outside, bring it onto the canvas. Here I would tear a word from current language, and I want to grasp it, and then if it resists, I pull it hard. Or, if there is no word, I will have to create it. And it’s so utterly stupid to say that philosophers fabricate complicated words for their pleasure. Yes, the vapid ones [nuls], of course, the vapid ones do that. But a discipline has never been judged by its nullities. The great ones never do that; when they create a word, first it’s a poetic splendor. Imagine! As soon as we get used to a philosophical word, that’s precisely why philosophers are no longer understood, but imagine the force of the word “monad”! You and me, we are monads. That’s fantastic. It’s enough to rediscover the freshness of the word to rediscover Leibniz’s poetry and his strength, that is, his truth.

So I must have a word, and it’s shameful that you haven’t already found it for me; you will realize that it was the one that Leibniz found. And it’s uniquely out of modesty and timidity that you aren’t speaking up all at once. There is only one word, so in this I have no choice: we have to call this second series the intensio, these are the intensio, in Latin with an “s”. [Deleuze spells it out] Just as the infinite series that organized itself in whole-parts constituted extensions, the infinite convergent series tending toward limits constitute intensions, that is, their terms will be degrees, and no longer parts. And at this level, I see outlining itself the possibility of a theory of intensities that picks up from the preceding theory of extensities.

And in fact, the internal characteristics – this isn’t in Whitehead, it’s in Leibniz, but they complete each other greatly. The internal characteristics that define and that constitute or enter into infinite convergent series tending toward limits are intensities. I would say that seems strange, but in this, I have no choice. I must show that, concerning sound, even duration is an intensity, all the more so for the intensity of sound properly speaking, even the height of an intensity, even the timbre. And in fact, each of these intrinsic characteristics enters into convergent series. I mean, one mustn’t exaggerate here, but what does it mean in serial music when Boulez is praised for having imposed the series, including on timbres? In serialism in music, everything wasn’t just suddenly series. We are told in the dictionary of music that Boulez placed timbre itself into series.

Fine, no matter, we’ll forget this all too modern reference that has no use for us. It’s each of these internal characteristics that is, in power (puissance), a series, a convergent series tending toward limits. It’s the status of requisites. I would say that height, duration, intensity and timbre are the requisites of sound, and this will be very Leibnizian. I would say that tint, saturation, value and range (étendu)[9] are the requisites [Pause] of color. I would say more generally, since all these are examples from afterward, I’d say more generally that range – you will tell me that [with] range, you don’t have the right. Yes, I do have the right. Earlier I was talking about extension (ending in “e”), extensio (étendue). Now, fortunately, the Latin has more possibilities in this area, now Leibniz, when he tells us: matter has l’étendu for a characteristic, it’s no longer l’étendue/extension [ending in] “e”, it’s range (étendu). It’s no longer l’extensio, which would be difficult for us, praise God; it’s l’extensum, which really prefers not to be confused with l’extensio. And yet, in certain texts, Leibniz confuses them. What happens then? Of course, in certain texts he confuses them, when the problem [he addresses] is not about distinguishing them. When he groups them together, for example, the two kinds of series, he has no reason to specify the difference. On the other hand, when he takes the second type of series in its specificity, there he needs to indicate the difference, and he will insist that l’extensum must not be confused with l’extensio.

So I would say that matter has several internal characteristics – understand that this is going to be very important for us, for what’s coming — several! Every thing has several internal characteristics; there is not a thing that has only a single requisite. There is a profound pluralism in Leibniz. And matter has for requisite l’extensum, that is, range [l’étendu without “e”], but resistance also, but gravity also, and why not continue? But density also. All these have limits. These are internal characteristics or limits of convergent infinite series, but also active force. And perhaps you understand suddenly why Leibniz was so repulsed by the Cartesian idea that extension, in general, might be a substance. It was either a simple extensio, an infinite series, or it was a requisite of matter.

Is it truly matter? No, one must say, almost, that it’s the subject of all these requisites, all these series: it’s what there is that’s real in matter. One mustn’t be surprised that, shortly thereafter, Kant defines intensity precisely in its rapports with what is real in matter. For, especially for Leibniz, everything is not real in matter. But at the point where we are, I can say: all reality in matter is, or enters into, an infinite convergent series tending toward a limit, or rather, enters into several infinite convergent series tending toward limits, these limits being the requisites of the thing. You remember, if you indeed remember, that we did that from the start of the first term (trimestre). We saw and analyzed the notion of requisite very quickly. Fine. There we have the second [case].

I would like to conclude here on this point. You already have the idea of a certain conjunction. At the level of the real in matter, you have not only infinite convergent series tending toward limits, but you have a kind of conjunction of series at the level of the real, in matter, since the real in matter has several internal characteristics. There is no reality that has a sole characteristic. Sense that this is going to be essential for the theory of substance and for [Leibniz’s] opposition to Descartes. For in Descartes, substance has a single attribute and is defined by this attribute. You realize how much [Descartes] was suspicious: two attributes were too much, that would have wronged him. On the other hand, Leibniz found it comical that a substance would have only a single attribute. For him, it was grotesque. In any case, there is nothing in the world without a plurality of requisites. Fine.

With what does that connect? There is already conjunction. I add that Leibniz is ahead of Whitehead. It’s odd, it’s aggravating because Whitehead goes much farther. [Leibniz] adds a third kind of series. The more there are, the better this will be. This third kind of series – I remind you about it very quickly because we analyzed it in detail — is when one gets to monads, that is, possible existences. Each monad is defined by a convergent series, that is, by a portion of the world. But in this, these are convergent series that prolong themselves into one another in order to form a compossible world. This time, it’s no longer the conjunction of several convergent series through which reality passes, but the prolongation of convergent series into each other, corresponding to several realities. So that’s all quite good.

I say then that all that leads us to the same result. What I mean is, what are these two types of series in Leibniz? I leave the third one aside – complete it yourselves since we’ve seen it, I won’t return to the topic, the extensities and intensities. — I believe you must remember: when one has analyzed what happened in God’s understanding, according to Leibniz, we have seen God’s understanding was thinking simple notions… [Interruption of the recording; text from WebDeleuze transcription] [1:33:26]

 

Part 3

And there are three sorts of simple notions. It’s essential for Leibniz’s logic. First sort of simple notions were the infinite forms through self [l’infini par soi], that is, the forms that I can think as infinite by themselves. These were absolutely simple notions, or what Leibniz called: the Identicals. Not that one is identical to the other, but each of these simple notions was identical to itself. They connect to a first type of infinity, the infinite through self. [Return to the BNF/YouTube recording] It was the infinite through self, ok? – I don’t want to talk about this anymore – the infinite through self, simple forms, the Identicals, [as] first level, first level of God’s understanding.

The second level, we saw, was the Definables. These were still simple, relatively simple notions. [Pause] How did it emerge from the preceding ones? I only have a possible answer: that it’s not the same infinity. The absolutely simple ones are the predicates of God, that is, of infinity through self. The Definables, the relatively simple ones, are something else. They refer to another infinity. What is the second infinity? I have told you ten thousand times that you will understand absolutely nothing about seventeenth century thought if you do not see that it’s a thought about orders of infinity. Whether it’s Pascal, or Spinoza, or Leibniz, that’s the problem of the seventeenth century – I don’t say it’s the only one – the distinction of orders of infinity. Definables, it’s not the same infinity. With what infinity do they connect? What is this infinity of the second order? It’s no longer what is infinite through self, but what is infinite through its cause, that is, that which is infinite only through the cause on which it depends, the infinite through its cause.

Here I think, I don’t want to attempt a justification. I say it like that, and it’s up to those of you interested in this aspect of Leibniz’s thought to reflect. I believe that corresponds exactly. What is infinity through its cause? It’s the series that is infinite to the extent that all its terms enter into infinity in its rapports of the whole and parts. The infinite through its cause gets its status in series that enter into infinity in its whole-parts rapports. So that would correspond to the first series, the series of extensities. [Pause] And then there are notions even relatively simpler. These are no long Definables, these are requisites or limits, requisites or limits. There you have the three great regions of God’s understanding. And what is it? It links to a third sort of infinity. And what is it this time? It’s the infinite of convergent series tending toward limits.

With that distinction, we have a firm basis. The list doesn’t stop there, we will see, but that will be at the very end of our work. We will see that there are a lot more infinities. Those are the first three in Leibniz. He refines the orders of infinity. In Leibniz, there are three of them, there are three great initial ones, three great initial [orders of] infinity.[10] Very good, everything is great, for I would remind you, it’s up to you to compare, the famous letter seven of Spinoza, the letter to Louis Meyer on infinity, in which Spinoza distinguishes three infinities, three orders of infinity.[11] How do you want to understand anything at all in Pascal if — as I assume he’s an author you like — and in any of Pascal’s developments on infinities, if you don’t resituate [yourselves] a little into such beautiful and such comparable texts.

– I feel that I am going to have a dizzy spell. I hesitate between a Cartesian reaction, a paranoid reaction, [Laughter] and a schizophrenic reaction of flight. If there weren’t any bars (barreaux)… —[12]

… That’s the point we have reached on a certain level, in which even the idea – I am picking this up again — of history, object, subject has no sense. I cannot locate them; it’s as if you told me: in a particular level of the earth, can you locate a particular pebble? I would say, that depends, that depends on the nature of the pebble. At the level where we find ourselves, object, subject, history, including painting, etc., and I would say even sounds and colors, have no sense whatsoever. If I invoke sound and color, it’s by analogy, to offer an idea of this story of chaos. It’s not that you understand poorly, it’s just that you want to place everything on the same level. It’s troubling for any philosophy, but it’s particularly troubling for Leibniz’s philosophy that operates through very well determined levels.

At the point we’ve reached, as you said quite well, how does one get out of chaos to arrive at the event? We did so with nothing other than the idea of chaos, two kinds of series, the conjunction of these series that constitute the event. That’s all. It’s packed (bourré). By “packed”, I understand something precise, just as one says of a painting, of a drawing, it’s packed. If you add something to it, it’s ruined (foutu). You have paintings that include enormous empty spaces, [and] if you fill a tiny bit of this empty space, the painting is ruined! I would say that, however great the empty spaces might be, it’s packed. So, one must expect all this, it’s an adventure, it’s a very beautiful story, in the general sense. We have reached the event, but we aren’t going to stop there. I have already announced what the event is composed of, and that’s a whole new problem. What are the elements of events? With that, we shall see new notions emerge.

What is a weak philosophy? It’s a philosophy with a weak content (teneur) of concepts. It has two or three concepts, and it crushes all of them at the same level. But in a rich philosophy like Leibniz’s, there is an entire system of concepts that emerge at their moment. It’s just that you go too fast. It’s not that you are misunderstanding things, but that you are going too fast. Be satisfied with the level that we’ve reached. If you say subject or object, I will tell you, careful, we are not there. These are words that cannot have any sense at that level. We are in the process of engendering the event as a drop of reality. There is no place for the rest. And history even more so, there is no place for history. Will there ever be such a place? Of course. There will be everything that you want. And we are even going to see it. In other words, this doesn’t stop at the event, you understand?

So, my plea is this: everything that you said, on the contrary, shows that you have understood very well. But having understood well, why are you in such a hurry? There are moments when one has to be fast, and then there are moments where one has to be very, very slow in thought. There are moments in which it takes off in a rush, and then there are moments when it drags extraordinarily. I can’t say that the moments when it drags aren’t the richest, or that it’s the moments where it all takes off at top speed. In any case, a thought has rhythms in a strange way; it’s like music, you have very, very different, very variable tempos. So if you demand that notions from level four already be on level one, you are going to confuse everything, however strong or clever you might be; you will confuse everything. So…

Georges Comtesse: Can I make a few comments?

Deleuze: Yes!

Georges Comtesse[13]: I want to make a remark on the relationship between Leibniz and Descartes, because very often obviously between Serres … [a few indistinct words] some remarks on this, we can multiply the differences between these two philosophers from the point of view, for example, of methods… [indistinct words] specific to their philosophies. But perhaps more profoundly than their methodological differences or simply differences of content, [104:00] there can be between these two philosophers the same resemblance at the level of the same metaphysical fold because both belong to the same classic fold of metaphysics, that is to say, both want to detach themselves, to extract themselves, to emerge from the night to constitute a certain, a certain regime of light which is specific to each of them, but which may be different. But extraction, the exit from night is essential to these philosophers. The difference is that for Leibniz, night is an infinitely holey, infinitely cavernous space. Everything detaches itself, is extracted by an infinitesimal filter, [105:00] the depth, the dark depth of the monad with its mirrors and its white interior, while for Descartes, the night is no longer a space, a space full of holes, it is a time [indistinct word], a time which is incessantly cut by nothingness, and a completely discontinuous time. And to escape from this holed time full of holes, this nothingness, this annihilated time, to find oneself in an instant linked to it, an annihilation of time which will be precisely the being of the “I”, with a series of equivalences of the self, the soul, what corresponds to it, all kinds of corresponding things. But in Descartes as in Leibniz, there is exactly, beyond their divergences, exactly the same epochal fold of metaphysics, that is to say, exit from the night without the night differing; on the one hand, [106:00] it is a space extremely full of holes; on the other side, it is an infinitely burdened time or an infinitely holed time, which precisely determines the instantaneity of light.

Deleuze: I am going to tell you, Comtesse… [Laughter] — They notice my reaction to what you are saying. — So, that comes down to saying, and I am quite sure, that if you did a course on the same subject, you would do it entirely differently. What I am discussing is the little expression that you slid in: “That would be deeper.” The differences between you and me, it’s that you would insist, if I understood clearly, on a certain affinity between Leibniz and Descartes. I am quite aware that it’s possible and legitimate. But for me, I insist on a radical opposition that’s equally possible and equally legitimate. We have already had, it seems to me, we must have already had the same problem in the past, with Spinoza, [that] we can do both. When you say: for me, it’s a bit deeper, there I can get vexed because I don’t see why it would be deeper, one more than the other. I prefer to say, with great affection, that it’s equally deep, or it’s equally superficial.

But there we are: I do not at all say that you are wrong; it happens that for me, such as I have approached things, and by privileging – I am quite aware that I privilege this or that problem in Leibniz, and that you would privilege others to support your viewpoint, and other texts that you would have for yourself, I don’t put any of that into question – I am saying that in my schema, and besides, most of you have already understood this, I deny that Leibniz and even Spinoza belong – as you say – within the same fold as Descartes. For me, and it’s my sole bit of trickery  (malice) [Deleuze laughs], my trickery is that I consider Descartes to be a man of the Renaissance and not a Classic, that he still belongs to the Renaissance. What you have revealed in your brief intervention is that, no, there is a means and a possibility of making of Descartes not only a Classic, but in the end, the father of Leibniz and Spinoza. In one sense, that would be very interesting, but that does not occur at the level of a discussion. You would need to have an occasion to do an entire course on this, and myself as well, on the relations with Descartes, and this almost… and we would no doubt realize that certain listeners would favor your side, and certain listeners would favor mine depending on their affinity with problems that would have been stated at the start. But, in any event, what you have just said and outlined is obviously an absolutely different schema from mine.

For me, Descartes does not belong to this Classical world that I am trying to define, once it’s stated that this Classical world that I am trying to define is the Baroque world, for me, whereas for you, without doubt, what you call the Classical world would not be the Baroque world. It would be a world capable of including Descartes, Spinoza, and Leibniz. But I want to say, I am just saying, it’s not with the same texts that you would obtain your own interpretation. It’s not with the same texts. And I have always said and I repeat it to you, and this takes on an even more immediate sense with Comtesse’s intervention, I do not pretend that my interpretation is the only one possible; do I pretend that it’s the best? Obviously, otherwise I wouldn’t propose it, but I say that to myself very softly, and also while blushing with the shame that I feel, so I wouldn’t ever say it publicly. So I say: everything is good, everything is good provided that you make yourself your own judge, that is, you yourself are going to verify [this] in the texts.

So, allow me just to say, before returning to this final point, it’s a third infinity. We had the infinity through self, the infinity through a cause that referred, it seems, to extensions in so far as they constituted rapports of whole and parts to infinity, and then there we have the infinite series tending toward a limit, and that’s the third infinity. If I refer to Spinoza’s famous letter on the three infinities, the first two coincide. It’s the infinity through self, specifically God and what Spinoza calls his attributes, God and his attributes. [Pause] Second point, second infinity, Spinoza calls it infinity through its cause. Plus a third infinity that Spinoza distinguishes. Look at this letter that is quite beautiful. Notice that we have annotations by Leibniz on this letter from Spinoza in which Leibniz, who is however stingy about compliments and who is wary of Spinoza like the plague, — since Leibniz’s problem is especially that [he] not be taken for a philosopher of immanence; “I am a good Christian, I am orthodox”; Spinoza is the enemy to a point that Leibniz has played some damnable tricks (tours pendables) on Spinoza. Fortunately Spinoza remained indifferent. Leibniz has never been very clear. — And there you have Leibniz, despite his reticence, bursting with written compliments. About Spinoza’s third infinity, he says that Spinoza perceives something quite profound. And as it’s a mathematical infinity, and as Spinoza is notoriously not a great mathematician, while nonetheless being an excellent physicist and very, very talented optician, but he’s not a great mathematician, such mathematical compliments coming from Leibniz are very interesting.

How does Spinoza define the third infinity? He tells us that there are quantities that, although they are contained in finite limits, exceed any number. He himself gives a geometric example that does not seem to go in the direction of infinite convergent series. So I uniquely pose the question with a question mark: would Spinoza’s third infinity not be the same as Leibniz’s third infinity? But I conclude: nothing prevents them from resembling each other considerably, since in one case it’s an infinity of convergent series tending toward a limit, while in the other case it’s an infinity contained in the limits of space. I think that the conversion of one into the other is possible, even mathematically. So there would be a great interest in confronting Leibniz’s three infinities with Spinoza’s three infinities.

But, you see, I can just say, there are three sorts of simple notions in Leibniz, and with this, we rediscover to a certain extent something that we found from the start, from the previous terms (trimestres), I believe. We will leave aside absolutely simple notions since they only concern God, God itself, as we have seen; the relatively simple notions that concern the rapports whole-parts, the extensions; and the limits converging toward a limit that concerns intensions, intensities. I say that the last two, the last two sorts of simple notions refer precisely or somewhat precisely to the two types of series of Whitehead, the series divisible to infinity, without limit, and the series converging onto a limit.

So the conjunction of these last two series gives us the event or the actual occasion. What is an event? What’s so surprising? Well, nothing. If you recall the first term (trimestre), this was something we established (acquis): What Whitehead as the twentieth-century physicist that he was called vibration, that’s it almost exactly — and there, from the viewpoint of the concept, I see no difference; from the viewpoint of the scientific enrichment of the notion, there are great differences — it’s exactly what Leibniz, as great seventeenth-century mathematician, called an inflection. So, if you recall, our entire first term consisted of commenting on what an inflection was, and we knew ahead of time that an event was a conjunction of inflections. So we are achieving here the firmest fusion, if I dare say, with our work during the first term.

At this point, a new curtain lifts since we have reached the event. You recall what the event is: I am crushed by a bus, but it’s also the life of the Great Pyramid over ten minutes. Any passage of Nature is event, that is, any development of series. We will call it the passage of Nature, [or] if you prefer, passage of God, it’s the same. I am crushed by a bus, it’s God passing! [Laughter] I look at the Great Pyramid for ten minutes, and there again, it’s God’s passage, or a passage of Nature. It’s an event. Once more, what an event is, you will understand nothing if you translate it as: an event is the Great Pyramid has been constructed. It’s not about that. The construction of the Great Pyramid is another event. But the life of the pyramid during the ten minutes that I am looking at it is an event, and the life of the pyramid during the following ten minutes is another event. You will tell me: but during the five minutes included within the ten minutes, well yes, that’s indeed the divisibility to infinity. It’s even the first series, the infinite series that re-enters into rapports of whole and parts. I would say: the life of the pyramid during the five minutes is a part of the life over ten minutes. So everything is fine.

[Interruption by several students] Open the door, please, and ask those who are waiting there, what are you waiting for? [Different answers: A truck… They are waiting on another course… Like the last time…] Please be so good as to ask them… They really don’t seem very lively. [Laughter] Ask them calmly, what they are waiting for and if they are waiting for this classroom…. No? So, if you dare, you could tell them to back off a bit, if you dare, without angering them, right? [Laughter] They’re going to get mean. [Laughter; pause] No, no, it doesn’t matter. I think it would be better to back off. [Laughter] You probably didn’t see, but I saw a girl there who had a particularly dark and nasty look, so I’m telling myself… [Laughter] we had better not… There’s a reason why you should and sometimes there’s a reason why you should back off. So, fine, this works out well right now, a new scene, a new session.

What is an event composed of? For the moment I have nothing that composes an event. I have the conditions of an event, but what composes an event? [Pause] What is an event made of? And I propose to you the same method, despite it being very artificial: Whitehead’s answer, and Leibniz’s answer, compared. [Pause] For this, you find Whitehead’s analysis in Process and Reality. And he’s going to tell us… [Deleuze peruses in the text] one, two, three, four, five, it varies. I’m saying, first general answer: the component element of the event, that is, of the actual occasion is prehension.[14] Prehension. This will be Whitehead’s fundamental concept. But you immediately need to make a correction; you indeed except this answer to be very disappointing if a correction weren’t made: the prehension never ceases prehending other prehensions. In other words, the event is not a prehension, because at that point, it would only be a synonym of event, and it wouldn’t be a component. We have to say, in Whitehead’s language, that the event is a nexus of prehensions, in the plural.

You see that there are two definitions of the event or the actual occasion. I can say that it’s a concrescence of series, or I can say it’s a nexus of prehensions. A concrescence of series means: placing into convergence or conjunction, that’s the concrescence. Or I can say: it’s a nexus of prehensions, that is, there are prehensions that refer to each other.

What does Leibniz tell us? What is the element of the event? The element of the event is the monad! And what is the monad? You know, it’s a prehension of the world, what Leibniz translates as: every monad expresses the world. It prehends the world. Nexus of prehension means what? What are the elements going to be? I maintain that he distinguishes five of them. Every prehension has five aspects. And as every prehension is a prehension of prehensions, you sense that each aspect of a prehension is going to intersect with other aspects of another prehension. Each prehension presents a prehending subject. Intervening here is the notion: the first appearance of the subject. A datum, a Latin word always popular in philosophy, that is, a given, a datum or a prehended given. What is a datum or a prehended given? It’s another prehension pre-existing the prehension I am considering. Every prehension presupposes previously existing prehensions. A prehension, one or several previously existing prehensions will be the data of the actual prehension, that is, the data of the prehending subject. [Pause]

In other words, every event is prehension of preceding events. Note what the datum is, the prehended datum is. I would say: at my concert this evening Stravinsky will be performed in one manner or another; this prehension of the performed Stravinsky piece will prehend data, previously existing givens, specifically, a certain number of performances of the same piece. Notice that already, at this level, I have operations of repulsion. There are negative prehensions. By negative prehensions, we will call these prehensions that, in an actual event, reject certain preceding events. For example, if I am an orchestra conductor, there will be a negative prehension to a certain execution of Stravinsky that is being performed that evening with a particular kind of execution that I know well and that I cannot stand, no, especially not that! My prehension that evening will imply the negative prehension of a datum, that is, of a pre-existing prehension in the mode of repulsion, of exclusion. I would not take it into my prehension. We have all been there; these are fundamental choices we make. There are philosophers that we just cannot take within our prehension because we would vomit them out. Not in the case of philosophers because philosophy is so full of harmony! [Laughter] But in the domain of human passions, there are these phenomena of prehensions through vomiting or vomitive prehensions. Fine, I’d like to go quickly.

These prehended data, these prehended data that are pre-existing prehensions, they form the public material of my actual prehension, public. Whitehead really liked this word, “public.” He speaks of the public dimension of a prehension, in distinction to its private dimension. I’ll point out only this because it’s odd, in philosophy, this use of public and private at that level. Pre-existing events that are themselves prehensions, but that I apprehend in my actual prehension, are the public dimension of the prehension. Very strange, especially since there will be a private element; once again, there is a private dimension of prehension. So you see that every actual prehension has data, so there is a prehending subject, — the subject is nothing other for the moment than the act of prehension — there is prehended data that are old prehensions and that form the public [aspect] of prehension. It’s lovely.

Third component: what he calls the subjective form. The subjective form is the “how”, how my actual prehension prehend the givens. It’s what he calls: how my actual prehension prehends the given, the old prehensions, that is, you see immediately, in the mode of exclusion, the vomiting, or in the mode of integration, but what type of integration? That can be the project, that can be the evaluation, that can be agony, that can be desire, that can be just anything. He will call that the subjective form or the how of prehension, the manner in which prehension prehends the prehended, that is, the datum; he will call it the “feeling”. The subjective form is the “feeling”, what Isabelle Stengers proposed to translate the last time by “affect”. [Pause]

Fourth dimension, rather odd, because it is hardly French, that precisely we always discover our problem that we cannot get rid of: but my God, my God, why not revert to the attempt that only Nietzsche was capable of? Obviously, why not? Because one would require as much talent as Nietzsche, otherwise it would be lamentable. Why not undertake a national-tarian study (étude nationalitaire) of philosophy? Why not say: so that’s what is English in philosophy, that’s what is German, that’s what is French, that’s what is Greek, instead of attributing everything to the Greeks? In Beyond Good and Evil, Nietzsche was able to do it once, but as he didn’t devote himself, what he was able to do once, he was able to do it notably for the Germans both in the funniest way and in the most philosophical manner of all.

And precisely, and this is good case of the support provided to me and that caused me to re-read in Nietzsche’s Beyond Good and Evil a passage on the German soul. And this admirable text says generally this, I summarize it rapidly. It says, Germans consider themselves deep, Nietzsche says, Germans consider themselves deep, and other people have followed this, and they speak generally of the depth of the German soul. And you know, he says, the German soul is not deep, but it’s your choice: it’s better or much less good, it’s a lot more or a lot less. It’s not that the German soul is deep, but that it is so multiple, it’s full of folds and pleats. And clearly, this text appeals to me. This text appeals to me. To the extent that we have defined the entry of Germany onto the philosophical scene through Leibniz, under the form of a Baroque philosophy that operated by folds and pleats, it’s good, it’s pleasing to find this confirmation: the German soul is full of folds and pleats. One had to wait for Hegel to deny it. That is, Hegel said, no, no, we are deep. At that point, all is lost, all is perhaps lost.

Fine, I was saying that because in the direction of what is English in philosophy, but I am going to tell you, but I’m taking risks because… Nietzsche missed what is English in philosophy because he detested the Utilitarians. He didn’t see that the Utilitarians were crazy; I don’t think he read the Utilitarians. His criticisms of them are weak in the long run. These pages are not good, the pages on the English. I think this is a shame because he didn’t see how the English were. The same goes for the madness of a people and their philosophy, the same thing. What is properly English, I will tell you. It’s the notion that emerges in fourth place, with Whitehead, the notion, I’ll say it with my accent, the notion of “self-enjoyment”. [Laughter] How do we translate that? It’s not possible. “Enjoy”? The en-joy-ment of self ! (L’enjoiement de soi !) Why do I translate this in such a grotesque way? You understand well that if I translate it by self-contentment, in French, it’s zero, it’s contradictory (c’est un contre-sens) in French. Why? I always tell you that a philosophical concept is seeking the violent encounter of the flattest, the most banal, and the paradox personified (en personne). To take the flattest, and tell yourself, look at what [sort of] paradox there is here. I say the flattest, but I believe, I asked some competent people, if it’s true, it’s a very popular expression among the English, “Enjoy yourself.” It’s nice. At the extreme, we say that to a child to tell him/her: have fun (amuse-toi). It’s the equivalent of our “have fun”. I say to a little guy, go play, “enjoy yourself”, go have fun, let’s assume.

But the beggar at the rich man’s house, when he received a handout, or the philosopher when he knocks at the rich man’s door to assure him of a happy death, [Laughter] they leave the house saying: “enjoy yourself”. And why? Because you sense that the expression is extremely biblical, and that, you certainly are aware that for the English, the Bible is not a holy book, or isn’t merely a holy book. It’s the book of all and of nothing. It’s the book of all wisdom and of all popular wisdom. “Enjoy yourself!” Take delight! (Rejouissez-vous !).

There you have an element of the event, self-enjoyment, that is, the prehender (le préhendant) — I am translating there, at the point we have reached. Sense that we have no choice, we have no choice — the prehender can only prehend the givens by taking delight and rejoicing. Hence my question: what is this “self-enjoyment”? Is it really a typically English concept? Let’s reflect on this a bit. Whitehead’s pages are sublime; they are sublime on “self-enjoyment” which is a philosophical category which, in my view, if the French ignore such a philosophical category, the French are so riddled by the opposite, by self-melancholy. [Laughter] The French are so depressed that “self-enjoyment”, that? No way. What [the French] know is the absence of being (le manque à être) which is dying. [Very brief drop in the recording sound, without interruption]

I am not saying that English philosophy is reduced only to that [concept]. For those who are a bit familiar with it, what does [English philosophy] consist of? It consists of a sublime encounter: the encounter of the most demanding empiricism and the subtlest neo-Platonism. The most typical representative of this is one of the world’s greatest poets – whose name I immediately forget, but I have to work to recall it but that you know quite well, — … Well, the field of the former Marat [Pause; we hear a student suggest a name to Deleuze] Coleridge! That’s it! Coleridge who is  not only an immense poet, but a very, very great philosopher, and who created this junction between empirical requirements and a neo-Platonic tradition, a tradition of neo-Platonic mysteries that is entirely curious.

Why do I invoke the neo-Platonists? Because the neo-Platonists were almost – how do I say this? – almost the English of this beautiful era. Byzantium is a kind of England… why? They had a very great idea. In Plotinus’s third Ennead, you have an idea that belongs… We can always play this game: what are the twelve separate pages that seem to you the most beautiful in the world? One plays it well with films. For me, I would immediately place this page of Plotinus among the ten most beautiful in the world. It’s a page in the third Ennead — Plotinus’s books are grouped in Enneads — a page from the third Ennead on contemplation.

Here is precisely what Plotinus tells us: everything rejoices, everything rejoices in itself, and it rejoices in itself because it contemplates the other. Every thing is a contemplation, and it’s from this that joy results. That is, joy is fulfilled contemplation. It rejoices in itself to the extent that its contemplation is fulfilled. And of course, it’s not itself that it contemplates. By contemplating something else, it is fulfilled itself. The thing is fulfilled in itself by contemplating the other thing. And he says: and animals, not only souls, [but] you and me, we are contemplations fulfilled by themselves. We are tiny joys, but we no longer know it!

Sense that these are the words of salvation of philosophy. It’s the philosopher’s profession of faith, and that does not mean: I am happy. What stupidities have been said about Leibniz’s optimism; that does not at all mean everything is fine! When someone tells you, like Plotinus: be joyful, that does not mean: go on, kids, you’ll see, everything is fine, be joyful, contemplate and fulfill yourself with what you contemplate. Then you will be completely joyful. And he says: not only you and me, [but] our souls are contemplations, but animals are contemplations, and plants are contemplations, and rocks are themselves contemplations. There is a “self-enjoyment” of the rock. By the very fact that it contemplates, it fulfills itself with what it contemplates. It fulfills itself with what it contemplates and through this, it is “self-enjoyment”. And here, he finishes splendidly, it’s a text of such beauty, he ends it splendidly; and I will be told that I am joking in saying all this, but perhaps jokes themselves are contemplations. It’s a splendid text, look at it!

What does he mean? One gazes very well into the neo-Platonist system. Each being, at its level, turns back toward that from which it proceeds. That’s what contemplation is. Contemplation is conversion; it’s the conversion of a soul or a thing toward that from which it proceeds. By turning back toward that from which it proceeds, the soul contemplates. In contemplating it fulfills itself. But it does not fulfill itself from the other, that from which it proceeds – or of the image of the other from which it proceeds – without fulfilling itself with self. It becomes joy of itself by turning back toward that from which it proceeds. “Self-enjoyment”, the joy of self, is the correlative of the contemplation of principles. There you have a great neo-Platonist idea. Imagine an empiricist, and an empiricist who has read the Bible, that is, an Englishman, [Laughter] and who reads this text by Plotinus, and who sees that Plotinus says: even animals, even plants, even rocks are contemplations. He will say: I knew it. I knew it. And isn’t it what the Bible tells us when it tells us that the lilies and flowers sing the glory of God? The lilies and flowers sing the glory of God, what could that mean? Is it a poetic expression? But no. Each thing is a contemplation of that from which it proceeds.

But here we are on the empirical terrain, and that will change nothing. But we can make some progress. It’s getting easier and easier to understand what Plotinus meant, in any case. What does that mean, each thing contemplates that from which it proceeds? Well, yes, you have to imagine that a rock contemplates… Darn, (Zut) I’m again going to be out of examples, so this won’t be very convincing. The rock contemplates, silicon, surely carbon, x, y, z, etc. … from which it proceeds. Wheat sings the glory of the heavens, that means that wheat is contemplation of the elements from which it proceeds, and that it borrows from the earth, and that it borrows from the earth according to its proper form, and according to the requirements of its form, that is, according to its “feeling.” The requirements of its form are “feeling.” And a living body, a living body contemplates, me, my living body, my organism, not me, it’s for this that they will slide into a vitalism; empiricists will slide into a vitalism that is a marvel of the world. Understand? An organic body, but it contemplates, carbon, nitrogen, water, salts from which it proceeds. Let us translate in terms that are known to you: each thing is contemplation of its own requisites. Instead of invoking the great neo-Platonist principles, we invoke the conditions of existence: each thing is unconscious contemplation of its own conditions of existence, that is, of its requisites. Good, little by little, we advance.

You sense what that means, to contemplate! Obviously it’s not a theoretical activity. Once again, it’s a flower, much more than the philosopher, that contemplates. The cow, the contemplations of the cow, there you are. What is there that’s more contemplative than a cow? [Laughter] It seems to look out into emptiness, but not at all. [Laughter] It’s true, there are animals that are absolutely not contemplative at all, but this is the lowest level of animals, for example cats and dogs, that contemplate very, very little. [Laughter] And they know very little joy. These are bitter animals, [Laughter] and they contemplate nothing. [Laughter] They link directly to the damned; we will see that the damned contemplate nothing, we have seen it. [Laughter] The status of the damned is that these are pure vomitives.  As they are nothing other than negative prehensions, as they have only negative and expulsive prehensions, since they are only vomitives in a pure state, [Laughter] well, cats and dogs are vomitives in a pure state. Also all the damned are escorted by a cat and a dog, [Laughter] and by several of them because there are currently more cats and dogs than the damned. At the time of Leibniz, things must have been more reasonable, there were a lot fewer.

But cows? Cows are eminently contemplative, and what do they contemplate? Not stupidities (bêtises). They contemplate the elements from which they emerged, they contemplate their own requisite, and the requisite of the cow, is grass! But what does contemplating mean? With grass, that is, with grass they create flesh, cow flesh. You will tell me that for a cat and dog, we need to discuss this. It’s well known that a cat’s flesh is not very tasty. As people say, it’s tasteless (fade). For dogs, it’s the same. They are all-purpose food. For the Chinese, they call this meat just anything.[15]

A student: And does God contemplate?

Deleuze: That’s a very important question, but this we will see.  With this, there is no difficulty because God being infinite in itself, it has plenty to contemplate. Auto-contemplation and “self-enjoyment” of God is properly infinite, by definition. If you read… Don’t take the example of cats and dogs, it’s not very illuminating. Understand, at least, what it means to contemplate. It’s here as well that we are fully within a philosophical concept. In this, Whitehead was right when he renounced contemplating. Contemplating already existed quite fully, in the work of a great author and predecessor of Whitehead, a great English author obviously, there was only him doing this, it was [Samuel] Butler. In a very, very brilliant book entitled Life and Habit, Butler explained that all beings are habits, habituses, and these are also full of philosophical concepts, and the habitus was contemplation. And in some very lovely pages, he stated that wheat was contemplation of its own elements, elements from which it emerged, and through that, it was habitus, even full, says Butler, a very beautiful thing, of a “joyous and naïve confidence in the self”. Sense that in [D.H.] Lawrence, the extent to which all this is English – in Lawrence, in great pages on nature, you will find similar things.[16] If you consider this affectation, you are missing everything. It’s one of the most power thoughts, I believe, of a kind of pantheism. This conception of nature is astonishing. They are not playing at being idiots; they lived nature in this way, as organisms that fulfill themselves, in what? Contemplating? No!

Once again, Isabelle [Stengers] said it quite well the last time, they propose…  Whitehead does not use the word “contemplate”; he uses the word “envisage”, it’s a tiny nuance. It’s to suppress the passive aspect. He means that there is prehension of requisites. The subject prehends its own requisites. One envisages one’s own requisites more than one contemplates them. And, in fact, it’s not a pure contemplation; it’s not an abstract contemplation, so Whitehead is afraid that the word contemplate… I prefer, on the contrary, the word contemplate, because risking the misunderstanding matters little, but [the word] is more powerful (chargé), it seems to be stronger.

But why isn’t it a passive contemplation? Because, literally, we could find a word for it, the name of an active operation. In fact, it’s a contraction, a contraction. If I say that, everything becomes clear, it seems to me; if I say that an organism contracts the elements that it needs, that is, your organism is a contraction of carbon, water, oxygen, salt, etc., it seems to me that this becomes extremely clear. If I say that a rock is a contraction of silicon and I don’t know what else, that becomes very clear. So if I say, while generalizing, every prehension prehends its givens, prehends the data, that is, the past prehensions since, in fact, the silicon itself is prehension, carbon itself is prehension. These are prehensions assumed by the living. Prehension never prehends anything except prehensions. I’d say that nitrogen, carbon, oxygen, salts, are “public” materials of the living. Thus, prehending is always contracting past prehensions; it’s contracting data. And in contracting the data, I fulfill myself with the joy of being myself [Here ends the WebDeleuze transcript] which is absolutely not joy of the kind “how fine and handsome you are”, which is nothing other than subjective “feeling” in a pure state, that is, the naïve confidence that this is going to endure.

What is living if not precisely this “enjoyment”? And however melancholic you pretend to be, [Laughter] and however awful you feel in the morning, and however depressed when you got up, you can’t suppress this little “enjoyment”. Why? Because what is this? It’s the small confidence that this is going to continue, that is, I mean, that your heart is not going to stop at this moment. What is agony? Agony is any interruption of the continuous process of “self-enjoyment”. What is there that’s so agonizing in a not terribly dangerous phenomenon like tachycardia? It’s that tachycardia gives us the impression that it’s not going to last, that the heart is going to stop. But, we cannot live with the idea that the heart is going to stop from a heart attack. Never has a cardiac sufferer lived with the idea that his heart was going to stop; otherwise, one must go urgently to the hospital so that he might be able to stand this suspicion. Living is always having this confidence in what ever state you might be. There is absolutely no point in being surprised that someone dying still has this confidence. There is no point making up words to say, that one must speak the truth or not speak the truth, all that. These appear to me to be false problems par excellence. This is not at all the question.

The question is that each person might save this small confidence, that it’s not going to stop in the next moment, and the rest will take care of itself. It’s maintaining this kind of “self-enjoyment” that is indeed something else, as we will see later. Leibniz speaks of it in his own way; we have indeed seen that. We can feel [“self-enjoyment”], but in the depth of pain, the worst of pains. Grant me that in the worst pains, you have not doubted that this was going to continue. I am not talking about the pain, but that your heart was going to continue its contractions, that your heart was going to continue to contract. Contract what? Blood, to prehend the blood that reaches it. The heart is a prehension; the heart is a subject. Each of your organs, whether internal or external, is a subject that prehends, and that prehends what? That prehends other prehensions to infinity, and it has a “feeling”, henceforth, insofar as it prehends, that it has a “how”, a manner of prehending of what it prehends. And insofar as it has a “feeling”, this “feeling” fills itself in the form of a small joy of existing, the “self-enjoyment”. Well, so, I am not at all saying, no more than Leibniz, that the world is marvelous. I am saying that if we don’t reach this entirely simple dimension of the living being, we can always create a philosophy of melancholy, but there are always people to say: this doesn’t concern me. And well, there we are, you understand?

So, I would say [that] “self-enjoyment”, and already even “feeling”, is on the contrary the private form of prehension, and it’s in a sense of something that cannot be restrained. For myself, I can freely remove it from myself through suicide if I judge that suicide is indispensable. But no misfortune, no danger, to some extent, no illness can remove it from me since it’s only the calm confidence that this continues, but not forever. How do you expect my heart to beat without believing that it’s going to beat indefinitely? If my heart believed itself to be beating for a limited duration, it would immediately stop. My heart is a prehending subject. And me, what am I? I am a conglomerate of prehending subjects. I am a nexus of prehensions, and it is all these prehensions that have some “self-enjoyment”. [End of the recording] [2:41:21]

 

Notes

[1] Having devoted the previous session on 10 March 1987 to the Leibniz-Whitehead connection in the presence of Isabelle Stengers, Deleuze continues this “confrontation”, but now within the context of development of his reflections on the fold, notably within chapter 6. As with the previous session, the Web Deleuze transcription is missing two important segments totaling approximately 38 minutes, completed with reference to the nearly complete BNF and YouTube recording.

[2] On the genesis of the event through Whitehead, see The Fold (University of Minnesota Press, 1993), pp. 76-78; Le Pli (Minuit, 1988), pp. 103-106.

[3] For development of the screen in relation to chaos, see The Fold, pp. 76-77; Le Pli, pp. 103-104. Deleuze develops many of these themes throughout chapter 6, “What is the Event?”

[4]  Further on, Deleuze distinguishes this term (and spelling) from its homophone, étendue, extension.

[5] Cf. the 3 March 1987 session for discussion of these Baroque painters.

[6] This word is something like “paratadestama”.

[7] See the Timaeus, 52e-53a.

[8] See the Timaeus, 53d.

[9] Cf. Deleuze’s explanation in note 4 and subsequent explanation..

[10] On these orders, see The Fold, pp. 45-47; Le Pli, pp. 59-63.

[11] In The Fold, Deleuze indicates this reference as letter XII; cf. p. 149, note 12; Le Pli, p. 63.

[12] Deleuze refers to the windows of the room where the session takes place, a subject discussed several times during the year, and presumably Deleuze looks at the seminar room windows for a means of escape! At this point, given the very brief drop of the recording’s sound, there apparently is a break in the session. When he returns, Deleuze seems to be responding to some students’ comments made during the break..

[13] Comtesse was a regular, extraordinarily devoted student in Deleuze’s seminars (cf. François Dosse, Gilles Deleuze, Félix Guattari. Intersecting Lives [Columbia University Press, 2010], p. 356; Gilles Deleuze, Félix Guattari. Biographie croisée [La Découverte, 2007] p. 421).

[14] Cf. The Fold, pp. 78-79; Le Pli, pp. 105-107.

[15] These remarks echo in some ways the comments that Deleuze makes in the “A as in Animal” section of L’Abécédaire de Gilles Deleuze with Claire Parnet (Gilles Deleuze, From A to Z).

[16] Although Deleuze refers to T.E. Lawrence earlier in the session, Deleuze here seems to shift to his other preferred author by this name.

 

Notes

For archival purposes, an initial version of this translation was prepared based on the available transcript at Web Deleuze for addition to this site in February 2019. Additional revisions to the French transcript and the English translation occurred in September 2019 based on access to the BNF recordings and in November 2019, with additions and revised description completed in September-October 2023, and updates in February and April 2024.

Lectures in this Seminar

square
Reading Date: October 28, 1986
right_ol
square
Reading Date: November 4, 1986
right_ol
square
Reading Date: November 18, 1986
right_ol
square
Reading Date: December 16, 1986
right_ol
square
Reading Date: January 6, 1987
right_ol
square
Reading Date: January 13, 1987
right_ol
square
Reading Date: January 20, 1987
right_ol
square
Reading Date: January 27, 1987
right_ol
square
Reading Date: February 3, 1987
right_ol
square
Reading Date: February 24, 1987
right_ol
square
Reading Date: March 3, 1987
right_ol
square
Reading Date: March 10, 1987
right_ol
square
Reading Date: March 17, 1987
right_ol
square
Reading Date: April 7, 1987
right_ol
square
Reading Date: April 28, 1987
right_ol
square
Reading Date: May 5, 1987
right_ol
square
Reading Date: May 12, 1987
right_ol
square
Reading Date: May 19, 1987
right_ol
square
Reading Date: May 26, 1987
right_ol
square
Reading Date: June 2, 1987
right_ol